
OTIC FILE COPY &

0 NAVAL POSTGRADUATE SCHOOL
No Monterey, California

DTIC VlAM,,. .,E-CT EFEB 1519 90

THESIS
AN INTELLIGENT COMPUTER-ASSISTED

INSTRUCTION SYSTEM FOR
UNDERWAY REPLENISHMENT

by

Patricio Jose Salgado-Zapata

June 1989

Thesis Advisor Neil C. Rowe

Approved for public release; distribution is unlimited.

90 02 15 024

Unclassified
security classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if applicable) 33 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(if applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Element No Project No ITask No I Work Unit Accession No

11 Title (include security classification) AN INTELLIGENT COMPUTER-ASSISTED INSTRUCTION SYSTEM FOR
UNDERWAY REPLENISHMENT

12 Personal Author(s) Patricio Jos6 Salgado-Zapata
13a Type of Report 13b Time Covered 14 Date of Report (year, month, day) 15 Page Count
Master's Thesis From To June 1989 76
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field Group Subgroup Intelligent Computer-Assisted Instruction (ICAI), UNREP.

19 Abstract (continue on reverse if necessary and identify by block number)

-This vasseea discusses the design, implementation, and testing of the UNREP system, an Intelligent Computer-Assisted

Instruction (ICAI) tutoring system to simulate Underway Replenishment operations by training two students simultaneously

on separate computer workstations. Each student plays the role of the Officer of the Deck (OOD) aboard each of the ships

involved. Emergency situations are included to add realism to the simulation.

While several different ICAI systems have been developed in the past, few have focused on the coordination aspects of

applications which involve cooperation in joint activities, such as military operations. Artificial Intelligence (AI) techniques

and programming tools were employed to construct this system. Education and training in the military, ICAI systems for

military applications, ICAI general characteristics, knowledge representation, and time and task coordination are some of the

topics discussed in this thesis. .*-, -,,. / ., r .

20 Distribution Availability of Abstract 21 Abstract Security Classification
ER unclassified unlimited C same as report 0 DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (include Area code) 22c Office Symbol
Neil C. Rowe (408) 646-2462 52Rp

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete

Unclassified

1

Approved for public release; distribution is unlimited.

An Intelligent Computer-Assisted
Instruction System for

Underway Replenishment

by

Patricio Jos6 Salgado-Zapata
Lieutenant Junior Grade, Ecuadorian Navy
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989,

Author:

Approved by:

Neil C. Rowe, Thesis Advisor

Y h-jeng Lee, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

Kneale T._ , 5st

Dean of Information and Policy Sciences

l l 'i•

ABSTRACT

This research discusses the design, implementation, and testing of the UNREP sys-

tem, an Intelligent Computer-Assisted Instruction (ICAI) tutoring system to simulate

Underway Replenishment operations by training two students simultaneously on sepa-

rate computer workstations. Each student plays the role of the Officer of the Deck

(OOD) aboard each of the ships involved. Emergency situations are included to add

realism to the simulation.

While several different ICAI systems have been developed in the past, few have fo-

cused on the coordination aspects of applications which involve cooperation in joint

activities, such as military operations. Artificial Intelligence (AI) techniques and pro-

gramming tools were employed to construct this system. Education and training in the

military, ICAI systems for military applications, ICAI general characteristics, knowledge

representation, and time and task coordination are some of the topics discussed in this

thesis.

AC~ieS:O, '

L;,j, j .. .C.:d C'

By

L) ,; t- ,. ,a

Oj~~~te

* dl

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. IN TRO D UCTION .. I

A . U N R E P ... 2

B. SCOPE OF TH ESIS .. 3
C . PR EV IEW ... 3

II. ICAI SYSTEMS IN MILITARY APPLICATIONS 5
A. OVERVIEW OF ICAI SYSTEMS 5

B. M ILITARY ICAI SYSTEM S 7

I. M ETU T O R ... 9

III. OVERVIEW OF UNDERWAY REPLENISHMENT 12

A . PROCED U RES .. 13

1. M aking the approach 13
2. Replenishment and station-keeping 14

3. D eparture .. 14

4. Em ergencies .. 15
B. APPLICATION COVERAGE 15

IV. UNREP: A MULTI-USER ICAI SYSTEM 17
A. SYSTEM ENVIRONMENT AND OVERVIEW 17
B. UNREP KNOW LEDGE BASES 18

1. UN R EP D efinitions 22

C. METUTORII: A MULTI-USER APPROACH 24

1. G eneral D escription 24

2. Im plem entation ... 25

V . R E SU LT S ... 29

A. MEMORY REQUIREMENTS 29
B. TIM E CONSIDERATIONS 29

C. A CCU RA CY .. 31
D. PROBLEM COM PLEXITY 31

v

VI. CO N C LU SIO N S ... 32

A. MAJOR ACHIEVEMENTS 32

B. WEAKNESSES AND RECOMMENDATIONS 32

APPENDIX A. UNREP DELIVERY SHIP DEMONSTRATION 34

APPENDIX B. UNREP RECEIVING SHIP DEMONSTRATION 39

APPENDIX C. UNREP DELIVERY SHIP KNOWLEDGE BASE 44

APPENDIX D. UNREP RECEIVING SHIP KNOWLEDGE BASE 48

APPENDIXE. METUTORII SOURCE CODE 52

LIST OF REFERENCES ... 66

INITIAL DISTRIBUTION LIST 67

vi

LIST OF FIGURES

Figure 1. Example of "randsubst" Predicate.............................22

Figure 2. Sample FACTS File Contents................................26

Figure 3. Multi-user Implementation Details............................ 27

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Professor Neil C.

Rowe, who provided guidance and assistance throughout this thesis research.

Writing a thesis is not just an intellectual endeavor, it is a time consuming and

emotional experience; with the support and encouragement of my beautiful wife Maria

Elena, this task has been easier to undertake. I would also like to thank my parents,

although far away, their love and dedication is a key to what I have become. Finally,

but not least, thank you Carlos Andr~s, though being too little to understand, you have

brought even more happiness into this exciting and exhausting episode of my life.

viii

I. INTRODUCTION

During peacetime the top goal of any military organization is to maintain its per-

sonnel and equipment ready to go into action whenever needed. The best way to achieve

personnel readiness is through continuous education and training. In this effort almost

20 billion dollars were spent in 1988 by the US Defense Department in formal training,

and almost 200,000 military and civilian personnel were required to provide instruction

[Ref. 1. With today's technological and economical complexities, the need for expertise

has never been greater. The increasing number of military systems together with their

technological sophistication influences the military to look for more personnel to master

complicated and varied subject material and skills. The percentage of high-skill person-

nel required by the US Navy increased from 23 percent in 1945 to 42 percent in 1980

[Ref. 2].

Education in the military is becoming a problem nowadays for three major reasons.

First, teaching and training personnel in real world situations can result in many un-

necessarv expenses; e.g., damage or loss of expensive equipment, injuries of personnel,

expenditure of fuel or other energy sources, and loss of valuable time. Second, the

number of military systems is increasing while the number of military personnel is de-

creasing in some countries; the military cannot afford to assign already available high-

skilled personnel as instructors or tutors, for that would ia-ke the situation worse than

it is. Third, military units like ships are usually deployed and constitute autonomous

units; their access to qualified instructors and instructional facilities is limited, if not

impossible.

New approaches to military training and instruction are necessary if the goal of

complete personnel readiness is to be achieved. If technology advances and

sophistication are invading the modern world, why not take advantage of them in the

area of education. Computers have become a widely used and easy-to-access commodity

during the last decade, so it is not surprising that the idea of using computers for in-

structional purposes has already been introduced. Computer-Based Instruction has been

used for several years now for different applications. The term Computer-Based In-

struction, or CBI, refers to all uses of computers in instruction.

Originally CBI took the name of Computer-Assisted Instruction, or CAI. As its

name implies, this approach was designed to aid students in the process of learning, but

it did not have a great impact primarily because the majority of these systems just

printed prepared text and ran prestored drill-and-practice sessions [Ref. 3 pg 225]. CAI

systems do not usually adapt well to the students' needs and speed of learning. New

advance,, in the area of Artificial Intelligence (AI) are giving new hope to this approach

to instruction. Computers can now be programmed to simulate a tutoring process sim-

ilar to the human counterpart. This new method is Intelligent Computer-Assisted In-

struction, or ICAI. An ICAI system is able to understand complex feedback from the

student and modify its tutoring strategy according to the student's level of learning.

The purpose of this thesis is to examine the feasibility of an ICAI system that tutors

two or more students at the same time and on the same application. Underway Re-

plenishment was chosen as the application domain since it is a military procedure which

requires the step-by-step interaction of two ships simultaneously in order to achieve its

goal.

A. UNREP

The primary mission of a navy is to maintain its country's sea routes of supply open

during peace and war times. The most efficient way to accomplish this mission is to

keep warships always at sea, well stocked and ready to go into action whenever neccs-

sary. Underway Replenishment, also known as Replenishment at Sea, or simply

2

UNREP, enables naval units to extend their operational time at sea. Fuel, supplies,

ammunition, and other types of cargo including personnel, are transferred from large

ships to less self-sufficient ships while cruising side by side in the open seas, making it

possible for a ship to remain at sea up to an entire period (theoretically) between major

overhauls or drydocking.

Useful and practical as this military concept seems, it is a complex procedure, re-

quiring special knowledge and expertise from the officers in charge of executing the

maneuver. During replenishment operations the danger of collision is much greater than

under normal circumstances. The unusual proximity of the ships involved and the

complex arrangement of lines and hoses connected between them reduces the

maneuverability and increases the vulnerability to attacks during war time. Open stor-

age compartments, exposed material, and occasionally dangerous or explosive cargo are

some of the hazards to which personnel involved are exposed.

B. SCOPE OF THESIS

The UNREP ICAI system (referred to as the UNREP tutor) described in this thesis

is by no means a complete course in UNREP operations. The UNREP tutor has been

designed to supplement the courses and training offered by a navy on the subject matter,

not replace them. The tutor focuses its instruction on ordeis issued by the Officers of

the Deck (OOD's) aboard each UNREP ship, since they are the ones that monitor this

procedure step by step. Potential users of this system could be Midshipmen or Junior

Officers in the navy who are training to get the OOD qualification.

The UNREP tutor was implemented using artificial-intelligence techniques in the

Prolog programming language.

C. PREVIEW

Chapter II provides background on Intelligent Computer-Assisted Instruction

(ICAI) and its components, and describes ICAI systems sponsored or developed by the

3

military, including the application-independent METUTOR program. Chapter III pro-

vides background on Underway Replenishment (UNREP) and describes its procedure

from the Officer's of the Deck point of view. Chapter IV discusses the actual design and

implementation of the UNREP tutor. Chapter V summarizes the performance of the

system, addressing issues such as memory requirements, time considerations, accuracy,

and complexity. Chapter VI discusses the major achievements and limitations of the

system, providing recommendations for future system enhancements. Appendices A and

B contain test runs. Appendices C and D contain the Prolog code for the knowledge

representations of the UNREP system. Appendix E contains the Prolog source code

developed by Professor Rowe.

4

II. ICAI SYSTEMS IN MILITARY APPLICATIONS

Many ICAI systems have been designed and implemented. Some of them have bteen

tested and evaluated, proving to be successful and efficient under real training situations.

Others, on the other hand, are far away from practical. This chapter gives an overview

of Intelligent Computer-Assisted Instruction, and briefly describes military ICAI sys-

tems, pointing out features of interest.

A. OVERVIEW OF ICAI SYSTEMS

Intelligent Computer-Assisted Instruction, or ICAI, is the area of computer science

that deals with the design, development, and implementation of computer-based systems

that provide adaptive and dynamic instructional environments to a user, applying

artificial-intelligence techniques [Ref. 4: p. 15].

Computer-based instruction, or CBI, has not always been considered a field of in-

terest specific to computer science. CBI was first explored by educational psychologists

under the name of Computer-Assisted Instruction, or CAl. CAI systems on their early

years were developed primarily as supplemental tools to the traditional methods of in-

struction. The approach of CAI was that of using computers as an efficient method of

translating a teacher's pedagogical decision into a program [Ref. 5], like a computer

textbook, without checking the student's real understanding of the subject. The human

teacher was always taking care of the tutoring aspects, and the computer was merely a

tool.

Later on, ICAI research was introduced into the computer-science field, and a more

ambitious task was undertaken. The interest of ICAI did not just comprise instruction

and learning aspects, but also the development of computer systems that would "effec-

tively capture human being's learning and teaching processes" [Ref. 4: p. 381. "Adaptive"

5l

and "dynamic" are key words in the definition of ICAI. The former refers to the ability

of the computer to adapt to the needs of the student depending on his/her level of

understanding: some students will grasp a point quickly, while others will need a differ-

ent approach to learn the same subject. In order for a system to be adaptive, it must

also be dynamic. Through interactions with the student during the tutoring session, the

ICAI system could determine to what level the student is assimilating the skill or subject

being taught. The system could not only get feedback on how many questions have

been answered correctly by the student, but evaluate these answers and try to define the

problem area of the student. Based on this evaluation, the system could change its

teaching style, speed, and depth.

Artificial-Intelligence (Al) techniques are indispensable in the design of ICAI sys-

tems. Natural-language understanding and representation for input and output is a

necessary feature for a more efficient interaction between the student and the system.

Knowledge representation is also required in an ICAI system in order to encapsulate all

the expertise on the subject being taught. Methods of inference provide the system the

ability to generate problems for the student. Some applications require algebraic sim-

plification, symbolic integrations, theorem proving, etc. Al techniques and methods

make these tasks possible in an efficient way [Ref. 3: p. 227].

Although there are no definite and precise characteristics which specify whether a

tutoring system is an ICAI system or not, four components are responsible for providing

the basic features of most existing ICAI systems. These components are the expertise

module, the tutorial module, the student model, and the inference engine [Ref. 3: pp.

229-2351. They represent respectively the subject to be taught, the tutoring strategy, the

theorized model of the student's knowledge, and the method to determine how much the

student has learned so far. Some ICA] systems contain well-defined and separate

6

modules, while others encapsulate the functions of the four distinguishing components

into one single module.

B. MILITARY ICAI SYSTEMS

This section will discuss ICAI systems that have been, or are currently being devel-

oped by the military and for military training applications. Fletcher [Ref. 61 has gathered

a list of ICAI systems which meet our criteria. We briefly describe seven of those sys-

tems plus another system that was developed at the Naval Postgraduate School and

constitutes the backbone of this thesis.

The Sophisticated Instructional Environment (SOPHIE) ICAI system is one of the

first and most important contributions, not only to the military training research com-

munity, but to the ICAI field in general. SOPHIE teaches problem-solving skills by

having the student take measurements on a simulated electronic piece of equipment

which has a malfunction. The student's goal is to fimd-the fault by troubleshooting the

simulated circuit [Ref. 3: p. 297]. SOPHIE's contribution to the ICAI field is the intro-

duction of device-based simulation to support checking of student inferences, as well as

heuristic strategies to allow question generation and answering mechanisms. [Ref. 6 and

Ref. 7: pp. 227-2811. STEAMER is another ICAI system that was developed in the late

1970's. This system is based in the simulation of a ship's steam propulsion plant.

STEAMER's main goal is to train operators by helping them understand this complex

application through interactive graphical interfaces [Ref. 4 : pp. 114-115]. Although the

actual implementation of reasoning mechanisms in the STEAMER project is purely

mathematical, its underlying principles have inspired research in the areas of mental

models and abstraction simulation in Al [Ref. 8: pp. 79-881.

QUEST (Qualitative Understanding of Electrical System Troubleshooting) is similar

to the SOPHIE system in that the goal of the system is to provide the student with a

learning environment so that he'she can solve circuit problems. QUEST, however, relies

• .m m7

on graphic simulation as well as casual explanations of circuit behavior to support the

student's learning process [Ref. 8: pp. 88-89]. Like STEAMER, QUEST investigated the

research area of mental models, but it also emphasized on the area of qualitative

reasoning.

The Intelligent Maintenance Training System (IMTS) is intended to simulate the

functions of different devices and train students in their maintenance, therefore acting

as an operational maintenance trainer. The system's current application is the simu-

lation of the SH-3 helicopter's blade-folding mechanism. The main characteristic of

IMTS is its emphasis on the interface with human instructors, allowing them to control

some of the operating modes of IMTS. This system builds a conceptual model of the

student's skills and measures his general knowledge and learning preferences in order to

select its tutoring strategy and type of problems. MACH-Ill is the Maintenance Aid

Computer for HAWK - Intelligent Institutional Instructor. It provides training in

maintenance of electronics and electromechanical systems in general; currently the sub-

ject domain is the maintenance of the high-powered illumination radar of the HAWK

air defense system. The MACH-III system supports three modes of instruction: dem-

onstration, step-by-step guided practice, and free-form monitored practice.

TRIO, a Trainer for Radar Intercept Operations, includes real-time simulation,

speech synthesis, and speech recognition capabilities in the training of F-14 interceptor

pilots and radar officers. The students solution to an air-intercept problem is compared

to the solution generated by an expert knowledge base. TRIO is not only concerned

with the tutoring of problem-solving methods, but it also trains students on how to react

fast enough when confronted with radar warnings. Specific function-modules generate

warnings to the student while monitoring his performance. Another system that has a

time-constrained application is the Intelligent Conduct of Fire Trainer (INCOFT) sys-

tem. It is intended to train students in the operation of the engagement control station

8

of the PATRIOT air defense system. INCOFT uses basically the same approach as

TRIO, with the exception of the speech capabilities since a spoken interaction is not that

important in the INCOFT application as it is in the TRIO.

1. METUTOR

METUTOR is a general-purpose Means-Ends Tutor developed by Professor Rowe at

the Naval Postgraduate School. Three major applications have been adapted to the

system so far: the MEFIRE, the CPR, and the Network-Mail tutors. The first trains

students on fire-fighting procedures aboard a Navy ship; the second uses the medical

field of CPR as its subject-domain [Ref. 9]; the third teaches students to use the Arpanet

MM mail facilities [Ref. 10]. The METUTOR system is written using the Prolog lan-

guage and a version of it is contained in appendix D.

The expertise module of an ICAI system is usually divided into a knowledge

base and domain-reasoning methods. In the METUTOR system, the knowledge base

is kept separate from the rest of the system since the tutor is intended to be used for

teaching or training various subject domains. The knowledge base used in this thesis

research is part of the discussion of chapter 4. The domain-reasoning methods in the

METUTOR use a means-ends analysis programl to reason top-down from abstract

goals. The top level is a recursive means-ends predicate which has four arguments:

State, Goal, Oplist, and Goalstate. The State is a complete list of facts which are true

in a state. The Goal is a list of facts that are required to be true in the goal state. The

Oplist is a list of operators required to reach the goal state from the starting state. The

Goalstate is a complete list of true facts at the goal state [Ref. I1].

The tutorial module in the METUTOR encapsulates tutoring strategies and

monitors the student model accordingly, guiding the dialogue between the system and

the student. Two general approaches are used by the METUTOR system. The first one

I This means-ends program is included in the METUTOR II listing of appendix D.

9

provides immediate corrective responses to the student's actions, while the second one

temporarily allows the student to follow an incorrect path of actions commenting on the

error only after the student has realized his own mistake. The tutoring rules used in the

METUTOR system are handled by the predicate handle-student.op.2

The METUTOR's student model uses a stack representation of the student's

applied operators in order to determine the student's level of understanding. This stack

is compared to the expert's solution path of operators by the inference-engine module,

and the tutoring strategy to be used is determined by figuring out what the student is

actually trying to do at each step during the tutoring session. The following tutoring

replies are used by the tutorial module in the METUTOR program:

* OK. The student's response matches that of the expert module means-ends
analysis.

" The possible operators are: < list of operators>. The student requested a list of
valid operators by entering a help word.

I assume you mean < operator>. The student made a spelling error when enter-
ing the chosen operator. The tutor recognizes the operator though.

Not a valid operator--please choose one of. <possible operators>. The student
entered an invalid operator, or a string of nonsense characters, or made too many
spelling errors. He: she has to enter an operator again.

0 That operator requires that <required precondition list>. The facts in the pre-
condition list must first be achieved in order to apply the operator.

* That will not affect anything. The student's chosen operator does not have any
effect on the current state.

0 You cannot ever succeed if you do that. The operator chosen by the student
would create a state from where it would be impossible to reach the goal state.
The student has to type another choice of operator.

0 That does not seem immediately helpful, but I will try it. The student is allowed
to follow his:her own solution path. This tutoring strategy does not tutor imme-
diately, but sets up a flag in the database, indicating that the student seems to be
pursuing a digression.

I wtill try it but it is not recommended first when < recommended operators >. The
student has picked an operator which does help reach the goal state, but it is not
the highest-priority operator.

2 This predicate is also contained in the METUTOR 11 listing of appendix D.

10

* Not the operator I would choose, but let us try it anyway. The tutor cannot really
figure out what the student is trying to do, but allows him'her to apply it anyway.

9 You are returning to a previous state. The student is returning from a digression.
Works in conjunction with the "That does not seem immediately helpful, but I will
try it" strategy.

* Do you see now that your first choice of action in the state with the facts < previous
state description > was not the best choice; the < operator > action would have been
better. After allowing the student to continue with his/her solution path, the
tutor hopes the student realized why hisher choice of operator was not a high
priority one.

The inference engine module of the METUTOR is mixed in with the means-ends

tutor code. The means-ends tutor works in parallel with the student by asking an input

operator before every action. The inference engine checks if the student's choice of

action agrees with the tutor's internal recommendation; if it does, the tutor immediately

applies the student's operator; otherwise, the inference engine tries to figure out what the

student is doing by means of a complex analysis of the hypothetical state created by the

student. The tutorial module then takes over again and tutors the student accordingly.

11

III. OVERVIEW OF UNDERWAY REPLENISHMENT

Underway Replenishment (UNREP), also known as Replenishment at Sea, is the

term applied to the transfer of fuel, munitions, supplies, and men from one vessel to

another while ships are underway. Most of the transfers are performed from special-

purpose replenishment ships to combatant ships, and major combatants, like carriers for

example, are also capable of refueling smaller ships. Even the smallest ships can and do

exchange light freight, mail, and personnel with other smaller ships. In any case, the

larger ship, or the ship from where the cargo (fuel and personnel are also defined as cargo

in this case) is transferred from, is called the delivery ship, and the smaller ship, or the

destination of the cargo, is called the receiving ship.

The ability of men to work together smoothly is important in a replenishment op-

eration. The necessity for adequate training is increased in transfer operations by the

fact that crews from different ships and from different nations are called on to work to-

gether although they may never have had any contact with one another before. A high

degree of teamwork and coordination must be achieved. Preparing the cargo to be

transferred, rigging (setting up gear for working), and handling gear are all special skills

and techniques which are not within the duties of the Officer of the Deck. But certain

aspects of replenishment do concern the Officer of the Deck, also referred as the OOD.

He should know who is responsible for rigging the special gear required, how long this

preparation takes, when to station (assign positions) the special details (small group of

personnel temporarily assigned to fulfill a precise requirement, in this case a job related

to replenishment at sea), and particularly he should be familiar with the UNREP step-

by-step procedure.

12

The tutoring program of this thesis specifically focuses on the Underway Replen-

ishment procedure from the OOD's point of view.

A. PROCEDURES

The UNREP procedures for the U.S. Navy are described in detail in the NWP 14

[Ref. 121. Replenishment is accomplished with both the delivery and receiving ships

steaming side-by-side on parallel courses at a predetermined speed. But first, in order

for the ships to be alongside (side-by-side), one of them must approach the other.

1. Making the approach

A typical Underway Replenishment begins when a task-force commander ar-

ranges a rendezvous at sea with the group, and then orders the start of the replenishment

operation with a given ordered course and speed. The approach is executed as follows.

When steady on the ordered course and speed, the delivery ship will fly (display or ex-

hibit) the signal flag ROMEO at the dip (signal-flag hoisted about six feet down from

the full-up position) on the rigged side. She (ships are referred as feminine) will fly

ROMEO close-up (signal-flag hoisted full-up) when ready to receive, in other words,

when the replenishment side has been rigged. The receiving ship which is about 500

yards on the quarter (relative bearing halfway between astern and abeam on either side

of delivery ship) will also fly ROMEO at the dip on the rigged side when ready to come

alongside. She will fly ROMEO close-up when she is commencing her approach. The

receiving ship usually approaches the delivery ship because of the smaller's ship better

maneuverability.

Once both ships are alongside (actually separated by a distance of about 100

feet), the delivery ship shoots the gun-line (one of the methods to send the first line from

the delivery ship to the receiving ship) and the receiving ship receives and secures the gun

line. As soon as the first line is secured, and the transfer rigs are passed and connected.

13

both ships haul-down ROMEO (lower signal flag completely). This step completes the

approach phase of the UNREP procedure.

2. Replenishment and station-keeping

During the transfer of flammable or explosive items, such as gasoline, fuel oil,

and ammunition, both ships involved fly BRAVO at the fore. In order to reduce the

probabilities of collision by having both ships maneuver to keep their distance and

proper station, only the receiving ship is responsible for maneuvering. The receiving ship

must ensure that the specified distance between ships is maintained during the approach

and during the replenishment, as well as keeping her station exactly abeam from the

delivery ship. The delivery ship is only responsible for maintaining the predetermined

replenishment course and speed.

Keeping station abeam is simplified by watching the distance line and adjusting

the course accordingly. The distance line, among the first to be passed across, serves

as an indicator for the distance between ships; by watching it, the OOD of the ship will

know immediately that his ship is coming in too close or going out too far. Also, by

watching a mark in the other ship or observing the angle that the distance line makes

with the ship's side, the OOD can determine if the delivery sh'p is bearing slightly ahead

or behind, and get back into station by slowly adjusting the speed.

3. Departure

Fifteen minutes prior to the completion of alongside refueling or replenishment,

the receiving ship hoists PREP at the dip. Upon completion, the receiving ship hoists

PREP close-up, meaning that she is starting to disengage from the delivery ship. The

receiving ship then slowly increases speed and clears ahead and away from the delivery

ship.

14

4. Emergencies

Several emergency situations can arise during replenishment operations. The

prime objective during any emergency is to perform an emergency breakaway, in other

words, disengage as soon as possible in order to avoid a collision or expose the lines to

excessive tension and therefore endanger the involved personnel.

In the event of an emergency, both ships have to make sure that the personnel

handling rigs and equipment know about the emergency so they can disengage couplings

and other lines with dispatch. The emergency should be announced over the ships'

loudspeaker, and the EMERGENCY flag must be flown. As soon as all the lines and

couplings have been disconnected, both ships clear and sail away from each other.

B. APPLICATION COVERAGE

Trying to represent a complete real replenishment procedure can lead to an extensive

and complicated model. In order to simplify this application, several assumptions have

been made.

For purposes of this thesis, the UNREP procedures represented daytime operations.

Nightime operations involve other signals and increased difficulties arise, making the

model too complicated. Also, it is assumed that the only method of communication

between the two ships is by means of signal flags. In reality, communications are crucial

for the success of the operation, and that is why several means of communication are

used, such as sound-powered telephones, radio, hand signals, visual light signals, and

even megaphones.

Numerical data, such as actual speeds, courses, ship bearings, and distances between

ships, are not used in the modeling since in reality each ship has different characteristics,

so speeds and course adjustments would depend on the type of ship.

Emergencies in an actual UNREP could happen any time and in many different

ways. Again, for simplification purposes, only two types of emergencies are simulated.

15

They are steering system failure and excessive line tensioning due to improper maneu-

vering of the ship.

16

IV. UNREP: A MULTI-USER ICAI SYSTEM

A. SYSTEM ENVIRONMENT AND OVERVIEW

UNREP is an ICAI system developed and implemented on an Integrated Solutions

Inc. (ISI) Optimum V Workstation computer, using the MPROLOG language.

MPROLOG (Modular Programming in Logic) is a modular version of the logic pro-

gramming language PROLOG.

Given that the Underway Replenishment application requires the interaction of two

ships, the UNREP system was designed to handle two students simultaneously, each of

them acting as the OOD aboard each of the ships involved. The UNREP system re-

quires that each of the two students have access to individual workstations, both of them

connected to a common memory base. Two knowledge bases representing the UNREP

procedures for the delivery and receiving ships' procedures, respectively, were written

and adapted to the application-independent METUTORI I program. 3 The multi-user

approach was accomplished by adding to the METUTORI I program the ability to

handle several students (preferably not more than two as is discussed in chapter VI) at

the same time, each of them playing different roles within the same application. The

multi-user capabilities of the system do not affect the original single-user tutoring facil-

ities of the METUTORI I; as a matter of fact, a single-user version of the UNREP tutor

can be readily obtained by slightly modifying the knowledge bases of the two-user

system.

3 Chapter II, section B.A, reviews this program, and appendix E contains a listing of it.

17

B. UNREP KNOWLEDGE BASES

The knowledge bases for the UNREP tutor are contained in the files

MEUNREPDEL and MEUNREPREC.4 They represent the delivery ship and receiving

ship Underway- Replenishment procedures respectively.

The first step in the development of the knowledge representations was to gather the

subject matter required for the Underway Replenishment procedures. The domain ex-

pertise for each of the knowledge bases was extracted from the NWP 14 Underway Re-

plenishment Procedures Manual [Ref. 12 1. Although one of the main advantages of

ICAI systems in general is the capability to bring together the knowledge of several ex-

perts into a single knowledge base, we thought that the information contained in the

above mentioned publication was sufficient to meet the objectives of this thesis research.

Next, the expert knowledge was translated into a format that could be understood

by the METUTORI I program. The Underway Replenishment procedure is an ordered

sequence of actions, starting from an initial given state, the starting state, and ending

at a final state called the goal state. In order to reach the goal state, a recommended

solution path must be followed from the starting state, and going through intermediate

states. This recommended path can be achieved by "performing" successive actions, or

in other terms, by applying an operator at each given state, until the goal state is

achieved. A state is characterized by a set of facts, also considered a list of true facts.

Each of the facts in the goal state must be true by the end of a successful tutoring

session.

Facts can be achieved (added to the true fact list of a state) by applying recom-

mended operators for them. A recommended predicate in the knowledge base summa-

rizes such recommendations [Ref. I1: pp. 268-269]:

4 Appendices C and D contain the source code of the MEUNREPDEL and MEUNREPREC
knowledge bases respectively.

18

recommended([< fact to be achieved >], < operator >).

The recommended rules are ordered according to the priority in which the operators must

be applied.

An operator can only be applied if the current state contains all facts that have been

defined as prerequisites to that operator. The precondition predicate serves this purpose:

precondition(< operator > [< list of required facts >]).

In this predicate, the second argument is the list of facts that must be present in the

current state if the operator is to be applied in that state. The second argument can also

be an empty list if there are no prerequisites needed to use that operator.

After an operator is applied, the list of true facts, also known as the state

description, can change, adding new facts to the state, and deleting others. Two predi-

cates are defined in the knowledge base to handle these, changes:

addpostcondition(< operator > , < list of facts to be added > 1).

deletepostcondition(< operator > j < list of facts to be deleted > J).

Again, the second argument lists can be empty lists depending on the operator

postconditions.

It is important to mention that the METUTORII tutorial module checks the

knowledge base before starting the tutorial session with the student. It makes sure that

each operator is defined by the required two-argument predicates (recommended, pre-

condition, addpostcondition, and deletepostcondition predicates); in addition, it checks

that a solution of operators exists to achieve the goal state, given a starting state. These

tasks are always performed due to the application-independent nature of the

METUTORI I program.

Other optional predicates may be defined in the knowledge base to add flexibility

and enhance the realistic representation of the domain application. Three and

19

four-argument addpostcondition predicates may be defined for an operator. These pred-

icates are:

addpostcondition(< operator > j < list of prerequisite facts >],[< facts to be added>).

addpostcondition(< oper. > j < prereq. facts >],[< facts to be added > 1, < message >).

The three-argument predicate adds the facts listed in the third argument only if the ad-

ditional second argument facts are part of the current state description. The fourth ar-

gument is a message that appears on the screen when the list of required facts is true in

the state description. The deletepostcondition predicate can also be defined using these

three and four-argument formats, and they work similarly.

A nopref predicate is used when the priority of two operators in the recommended

rules is not of importance; in other words, the order in which the operators may be ap-

plied is arbitrary for the tutor. Its format is as follows:

nopref(< operator I >, < operator 2 >).

A very important optional predicate is the randsubst predicate:

randsubst(< operator > .[[< deleted fact > , < added fact > , < probability >,
< opt. message > 1,1 < another opt. quadruple > I, . .1).

This predicate introduces the factor of randomness into the tutoring session. If a

randsubst predicate has been defined for an operator, the first fact of the list will be re-

placed by the second fact on the list after the postconditions of that operator have been

applied. The third element in the sublist is the value that determines the probability of

occurrence of the random substitution. Either of the two facts can be "none" to allow

addition or deletion of facts in the state description. The student is aware of a random

substitution because a message is printed on the screen informing the occurrence of this

change. The fourth element in the sublist is an additional optional message that gets

printed on the screen after a random change.

20

EL!

For the multi-user tutor, we have defined an additional format for the randsubst

predicate:

randsubst(< operator > ... , < fact to be deleted > , < opt. message > ...]).

This format is required in the UNREP system when a wait operator is used in the

knowledge base. In this case, the fact in the list is deleted from the true fact list; no

probability weight is given because randomness is not a factor anymore. Using this

special format, the random change message does not appear on the screen. An optional

message may appear acknowledging the student on his decision to wait. This format is

equivalent to a normal randsubst with a "none" second fact and a probability weight of

one.

This format can better be explained using an example. Figure 1 shows the defi-

nitions for the operator wait until delivery ship shoots gun line. This operator may be

applied by the student acting as the receiving ship OOD whenever his ship is already

alongside and the delivery ship has not shot the gun line yet (precondition definition).

The fact gun line is shot cannot be added in reality to the state description when the re-

ceiving ship student applies the wait operator, as the recommended and

addpostcondition definitions suggest. The delivery ship must apply the operator shoot

gun line in order to assert this fact in the state description. The reason why the wait

operator seems to be asserting a fact that can only be added in reality by the delivery

ship student, not by the receiving ship student, is because the METUTORI I program

must be able to solve the UNREP procedure completely before the tutoring session

starts, to find if a solution path exists, for otherwise it would issue an error message

advising there is no solution to the problem. The fact gun line is shot is deleted from the

state description before the receiving ship student even gets to see it there, and a message

acknowledges his decision to wait. In summary, this special randsubst format allows a

21

recommended([shot(gunline)], wait(until.delivery,ship,shoots,gun,line)).
precondition(wait(until,delivery,ship,shoots,gun,line),

[alongside(ships),not shot(gun line)]).
deletepostcondition(wait(until,delivery,ship,shoots,gun,line),[j .).
addpostcondition(wait(until,delivery,ship, shoots,gun,line),[shot(gun line)]).
randsubst(wait(until,delivery,ship,shoots,gun,line),

[[shoot(gunline),"Please wait for gun line to be shot"])).

Figure 1. Example of "randsubst" Predicate

student to wait for an action that can only be performed by the other student. The state

description remains unchanged after a wait operator has been applied.

1. UNREP Definitions

Following is a list of operators that may be applied by a student during a typical

UNREP tutoring session. Each operator is described by giving first the type of ship

from which an OOD may apply the operator (either the receiving ship, or delivery ship,

or both), and next, the facts that are asserted in the state description once the operator

is applied. The order in which the operators are listed is not necessarily the same in

which they are applied, and the order may vary from session to session.

" Steer to ordered course and speed. Delivery ship OOD may apply it; accomplishes
the fact delivery ship is steady on ordered course and speed.

" Rig replenishment side. Both OODs may apply it; achieves the fact unrep side is
rigged on delivery (receiving) ship.

* Wait until delivery ship flies ROMEO at dip. Receiving ship OOD may apply it;
does not assert any facts.

* Fly ROMEO at dip on rigged side. Both ships may apply it; asserts ROMEO flag
is at dip on delivery (receiving) ship.

" Wait until delivery ship flies ROMEO close up. Receiving ship OOD.

" Fly ROMEO close up. Both OODs may apply it; achieves ROMEO flag is close
up on deliver. (receiving) ship, delivery ship is ready to receive, and receiving ship is
ready to approach.

" Wait for receiving ship approach. Delivery ship OOD may apply it.

* Approach delivery ship. Receiving ship GOD; asserts ships are alongside.

22

* Wait until delivery ship shoots gun line. Receiving ship.

* Shoot gun line. Delivery ship 0OD; accomplishes gun line is shot.

* Wait until receiving ship secures the line. Delivery ship OOD.

* Receive and secure gun line. Receiving ship OOD; achieves first line is secured

* Haul down ROMEO. Both ships; asserts ROMEO flag is hauled down on delivery
(receiving) ship.

Fly BRAVO at fore. Both ships; accomplishes BRAVO flag is at fore on delivery
(receiving) ship. When the receiving ship OOD applies it, a random substitution
may occur, asserting the fact delivery ship is bearing ahead.

* Wait until receiving ship flies PREP at dip. Delivery ship OOD.

* Fly PREP at dip. Receiving ship OOD; accomplishes receiving ship is ready to
disengage. A random substitution may also assert distance between ships is
changing.

Announce fifteen minutes to disengage. Delivery ship OOD; asserts fifteen min-
utes to disengage is announced. A random change may achieve unrep ships are on
emergency due to a steering system failure.

• Wait until receiving ship flies PREP close up. Delivery ship.

• Fly PREP close up. Receiving ship OOD; accomplishes receiving ship is starting
to disengage now, and PREP flag is close up on receiving ship.

o Disengage. Both ships may apply this operator; by applying it, the goal state
disengage is complete is achieved.

o Breakaway. Both ships. By applying it, the fact ships are ok is achieved; very
useful operator when the ships are on emergency. Also, the goal state is reached
when this operator is applied.

o Announce emergency. Both ships; accomplishes emergency is announced on de-
livery (receiving) ship.

o Fly EMERGENCY close up. Both ships; achieves EMERGENCY flag is close
up on delivery (receiving) ship.

o Increase speed. The receiving ship OOD may apply this operator. It should be
used when the delivery ship is bearing ahead, so that the fact receiving ship is on
station can be achieved.

* Decrease speed. This operator is meant to cause a tricky situation for the re-
ceiving ship OOD. When the delivery ship is bearing ahead, if the receiving ship
OOD applies this operator, instead of getting back on station, he will accomplish
the fact unrep ships are on emergency. This operator offers the student an alternate
path, but it happens to be the wrong path, therefore the student will have to get in
track again by fixing the emergency first.

o Issue rudder command. Receiving ship OOD. This operator may be used to
achieve the fact distance between ships is ok when the distance between ships is
changing. A random substitution may also assert the fact unrep ships are on
emergency due to a steering system failure.

23

C. METUTORII: A MULTI-USER APPROACH

1. General Description

The implementation of the UNREP system is based on the assumption that two

students are tutored on the Underway Replenishment procedures at the same time. One

of the students is playing the role of an OOD aboard a delivery ship, while the other

student acts as the OOD aboard a receiving ship.

The UNREP tutor system was tested using the PDSS (Program Development

Support System, by Logicware Inc.) facility in the Optimum V Workstations. A typical

tutoring session is started by having each student load two files in the PDSS system.

The first file is the METUTORI 1 and the second file is either the MEUNREPDEL, for

the delivery-ship-OOD student, or the MEUNREPREC, in the case of the

receiving-ship-OOD student. Then, each student queries the predicate go. By doing this,

the top level of the means-ends tutorial module is activated in the METUTORII,

therefore invoking the system. The tutor then prints on the screen an introductions and

then the tutoring session starts. The tutor shows the student a list of all the true facts

at a given state and prompts him to choose an operator. The student then types in his

choice of operator and waits for the tutor's next request. Three things can happen at

this point: first, the tutor may accept the student's operator and apply it to the state in

the simulation; second, the tutor may refuse an erroneous operator and ask the student

for another; third, it may send a message to the student informing him that the chosen

operator was ignored by the tutor because the state was changed by the other student's

actions, and to please select an operator again.

The third alternative is a characteristic of the multi-user version of the

METUTOR I1 program. The tutor has to analyze the situation again, based on the facts

describing the new state. Basically, of the two students, whoever enters first his choice

s See appendices A and B for sample test runs.

24

of operator gets to continue the tutoring session normally without interruptions, while

the other has to enter a new choice of operator. While some facts in the state de-

scription can be asserted by any of the two students, others can only be asserted specif-

ically by only one of the two students. Each student will reach different points in the

tutoring session where they must wait until the other student applies an operator that

will achieve the state description needed by the first student to continue his session.

2. Implementation

The UNREP system was implemented by modifying and adding some rules to

the original METUTORII program. The main implementation characteristic of the

UNREP system is a single file common to both students using the tutor. Stored in this

file are a session's current time-stamp and state description.

The file used in the UNREP system is called FACTS. Figure 2 shows an ex-

ample of the contents of this file for a given state. This file is initialized at the top level

of the means-ends tutor with an empty list as the state description (since the fact predi-

cates are defined so that there are not any true facts yet at this point) and a time-stamp

equal to zero. Also, a time-stamp predicate is asserted in the tutor's database with an

initial value of zero.

After the two halves of the tutor program have been activated on two terminals,

the first student to input his choice of operator adds some facts to his current state de-

scription and the time-stamp is incremented by one. The updated time-stamp and the

new state description are saved in the FACTS file; also the incremented time-stamp

value is asserted in the tutor's database for the first student, replacing the old value.

When the second student tries to input his choice of operator, his tutor program first

compares the FACTS file time-stamp to the time-stamp fact asserted in the tutor's da-

tabase for the second student. When both time-stamps agree, the tutor accepts the

25

15 ,* this is the current value of the time-stamp */

jok(unrep ships),ok(distancebetween.ships),rigged on detivery ship(unrep_.side)i

/* and this is the current state description */

Figure 2. Sample FACTS File Contents

second student's choice of operator and continues tutoring, but, since the first student

changed the time-stamp:

1. a time-stamp violation predicate is asserted in the second tutor's database;

2. the second tutor ignores the operator chosen by the second student;

3. it reads the new state and the new time-stamp from the FACTS file;

4. it prints a message informing the student of the anomaly, and lists for him the new
state description; and

5. it analyzes the problem again to determine the best operator now, based on the new
state description, before prompting the student for a new operator.

The behavior just described is implemented using Prolog backtracking in the

METUTORl 1 program. Figure 3 shows the actual implementation details that allow

multi-user tutoring through time-stamp coordination. This code is mixed with the

means-ends tutor code. When the recursive means-ends program pauses to ask the

student his next choice of operator, the check-with-student predicate queries the

check.time-stamp to compare the FACTS file time-stamp against the database's time-

stamp (after reading the student's input from the screen). If both time-stamps agree, the

check with student rule succeeds, causing the met rule to continue with its normal

sequence:

I. delete and add postconditions,

2. perform random substitutions,

26

met(STATE,GOAL,OPLIST,GOALSTATE,STACK,PRELIST,PREOPLIST,...):
check-with-student(OP,PRESTATE,D,NEWOP),

(additional code)
time_stamp(TS),
retract(time stamp(TS)),
NTS is TS+ 1,
asserta(timestamp(N'TS)),
updatefa ct_file(NTS, POST L IST),!,
means-ends-tutor(POSTLI ST,GOAL,POSTOPLI ST,GOALSTATE,...).

met(STATE,GOAL,OPLIST,GOALSTATE,STACK,PRELIST,PROPLIST...)
tsvio lation,retract(ts violation),
retract(time stamp(TS)) .nl.
write("*** SORRYIGNORED YOUR OPERATOR. OTHER USER JUST S
SCHANGED THE TRUE FACT LIST"),nl,
write("here comes the new state."),nI,
read-fact file(N\TS,N'\EWSTATE),
asserta(timestamp(NTS)),
mieans ends tutor(NEWST'ATE,GOAL,OPLI ST,GOALSTATE,STACK,
GOALSTACK).

check_with student(O,S,D,NO)

write("The following facts are now true:"),nl,
wiritelist(S. state).wvrite(". "),nl.
write(" "Wha t operator do you choose?"),nl,
niceread(A02 1).! .check-time stamp,
spa ce pa rse(A 02,0 3),!, hand le-studento op(03,0, S, D,NO).

read-fact-filc(TS.S).timestamp(TSl).
asserta(ts_violation),!,compare(=,TFS,TS 1),
rctract(tsvNiolation).

update -fact file(NTS,NS):
set_channel(outfile(outf).name = "facts.pro"),
set_channel(outfile(outf),buffer= 1000),
set-output(outfile(outf)),
write('NTS),nlNwrite(NS),
close output(outfile(outf)).

readjfact_file(TS.S)
set_channel(infile(d),name = "work;2 salgado,meunrep. pro"),
set_channel(infile(inf),name ="facts.pro"),
set_input(infile(inf),skip_unread_input,
read(TS),read(S),closeinput(infile(inf)).

Figure 3. MIulti-user Implementation Details

3. save the new time-stamp (after incrementing it) in the FACTS file, along with the
new state description (after the tutor has applied the student's operator), and,

4. recursively call means ends tutor.

27

If there exists a disagreement between the time-stamps, the checktime-stamp rule fails

(not without asserting first the time-stamp_violation predicate in the tutor's database),

and so do the check with student and the originating met rules, forcing the program to

try the next met definition. In that case, the following steps take place:

1. ts.violation is retracted from the database;

2. a message is sent to the student informing him that his operator has been ignored
due to a change of state;

3. the new time-stamp and state description are retrieved from the FACTS file;

4. the new time-stamp is asserted in the database, and,

5. the new state description is included in the recursive call to means-endsjtutor.

28

V. RESULTS

A. MEMORY REQUIREMENTS

The required memory space for the UNREP system was 42K bytes on each of the

two computers. The breakdown for each component file was as follows:

METUTORI I 34000 bytes

MEUNREPDEL 7200 bytes

MEUNREPREC 7800 bytes

FACTS 100 bytes (maximum)

(Each student uses only one of the MEUNREPDEL and MEUNREPREC).

The amount of required memory space was insignificant compared to the space

available in the ISI workstations. If we wanted to adapt the UNREP system to work

on a persona. c 3mputer, additional memory would be required for a Prolog interpreter

or compiler. To give an idea, the Prolog-86 interpreter requires approximately 100K

bytes of memory [Ref. 13: p. 1]; even then, the UNREP system plus this interpreter could

easily fit in a floppy disk.

B. TIME CONSIDERATIONS

With an interactive program such as the UNREP system, the total CPU time re-

quired for a tutoring session is not a meaningful measure of performance, because the

run-time can vary considerably from one student to another, depending on their know-

ledge of the subject matter and their learning ability; a student's typing skills can greatly

affect the total run-time since that can increase the amount of time spent by the tutor

checking for input errors. A tutoring session could last as little as five minutes, if both

students always typed in coordinated and correct answers, or as long as 45 minutes if the

29

students did not have any idea of what an Underway Replenishment was all about, and

they did not have typing skills.

A more meaningful measure of time performance is the time required by the tutor

to reply to a student. The time intervals, also called answering times, were measured

starting from the moment a student entered his choice of operator (by depressing the

enter or return key), until the moment the tutor replied a message on the screen. The

shortest answering time was of approximately I second (on the average), for the cases

where the student entered the correct operator and the tutor accepted it with an OK, and

also when the student entered a nonsensical string of characters and the tutor replied

with the message "Sorry, ignored your operator". The longest answering times oc-

curred when the student entered an operator which caused the inference engine to deeply

analyze the student's hypothetical state (the resulting state description if the student's

operator was to be applied) with calls to means-ends; in this case, the answering time

could be anywhere between 5 and 30 seconds, depending on the severity of the student's

misconception. This extended answering time was also true when the operator entered

by the student had some spelling errors, but this time was less than for the abo,- men-

tioned case. These answering time measures are important in ICAI applications since

long periods of time waiting for a reply can decrease the student's interest in learning.

Another consideration is that of the time required by the tutor to read and write

data into the common file FACTS. It is important to avoid situations where one stu-

dent's tutor would take a current state description, call it state-I, and use it to come up

with a recommended operator, while meanwhile the second student's tutor could apply

an operator and change state-i into state-2; the recommended operator for student I

would no longer be applicable. Fortunately, the time required to read a sample FACTS

file was approximately 0.22 seconds, and 0.1 seconds to write, meaning that the times

were small compared to the times usually taken by the students to input operators.

30

Thorough testing was performed on the system to detect possible deadlocks or any

other system malfunctions due to simultaneous (or at about the same time) inputs from

both students. Although we did not witness any problems during several test runs, this

does not prove that they will not occur, it just makes them unlikely.

C. ACCURACY

We were concerned with the accuracy of the tutor's responses to a student's input.

We analyzed cases where a student would make spelling errors on the input operators,

or input a nonsense string of characters, or apply operators that did not agree with the

tutor's recommended operator. In all cases it was found that the system would tutor

as expected. During the first development stages of this thesis research, it was found

that some tutoring statements made by the tutor did not make any sense, but it was only

because the knowledge representation had some bugs, therefore causing a misinterpre-

tation by the domain-reasoning methods.

D. PROBLEM COMPLEXITY

The application domain of the tutor is very complicated in reality. The factors in-

volved in a real-situation Undernvay Replenishment can be numerous and varied in type.

For purposes of this thesis, the knowledge representation was kept small to allow

enough time to develop and test the system during nine months. Even then, the steps

required by a student to complete a successful UNREP procedure were 13 for both the

delivery and receiving ship students, assuming that no emergencies have occurred, the

students have applied all the "wait" operators, and they have not made any mistakes.

31

VI. CONCLUSIONS

A. MAJOR ACHIEVEMENTS

This thesis has developed a prototype of a new kind of computer tutor for naval

training. Traditional teaching methods involving classroom instruction can provide a

student with the general knowledge in Underway Replenishment procedures, but they

cannot cover all the necessary coordination skills to execute this difficult task, between

two Officers of the Deck (OOD's) aboard each of the ships. Alternatively, hands-on

training is too expensive and may be dangerous. The UNREP tutor teaches Underway

Replenishment by using Artificial Intelligence (AI) techniques in an Intelligent

Computer-Assisted Instruction program. The system is capable of simulating an

Underway Replenishment situation and training two students simultaneously on sepa-

rate computer workstations, so that coordination skills are emphasized. Other ICAI

systems have been developed for military applications, but the novelty of the UNREP

system is its ability to handle two students at the same time on a joint application.

The memory space requirements of the system have shown that the UNREP tutor

is portable and can be adapted to smaller computer systems to allow training of per-

sonnel aboard ships, without expensive or hard to reach equipment. The tutor runs

sufficiently fast on the prototype machine to make speed not an issue.

B. WEAKNESSES AND RECOMMENDATIONS

Although this research accomplished its major objectives, some minor weaknesses

were found during the testing stage of the system.

The knowledge base representation of tne UNREP procedure involved most of the

important steps of the overall operation, and even an extra touch of reality was

32

introduced to the system by adding some emergency situations. However, a larger

knowledge base would be needed if the system was to be more realistic.

The number of operators, and therefore the number of definitions in the knowledge

base, have a direct impact on the time of execution, so if we wanted to have a more re-

alistic simulation by expanding the knowledge base, we would need to figure out how to

speed up the execution of the tutor program. An alternative would be to compile the

tutor instead of using the PDSS facility interpreter. Quintus Prolog offers such a com-

piler which is notable for its very high execution speed and its similarity to most Prolog

syntaxes (MProlog among them).

The names of operators defined for this application were very long strings o Ir-

acters. The use of menus to display the operators and choose them is recommended for

future enhancements of this system.

Tutoring would be more effective if a graphics interface was added to the system.

The current version of the UNREP system does not include actual distances between

ships, bearings, speeds of ships, and colors of signal flags, among other necessary factors

in a typical UNREP situation. These factors could easily be included in a graphics

interface, therefore allowing better simulation and in-depth training.

33

APPENDIX A. UNREP DELIVERY SHIP DEMONSTRATION

MPROLOG (2.1.0) LOGIC - LAB
(c) 1985 Logicware Inc.

PDSS Program Development Support System

read metutorll
read meunrepdel
go.

This is a test of UNREP procedures (DELIVERY SHIP)

Your objectives: disengage is complete.
(Type h after asterisk prompt for help)

Wait a moment while I analyze the problem thoroughly.

The'following facts are now true:
unrep-ships are ok, receivingship is onstation, and distance_betweenships
are ok.

What operator do you choose?
*steer to orderd course and speed
I assume you mean steer(to,ordered,course,and,speed).
OK.

The following facts are now true:
delivery-ship is steady-on-orderedcourse_and_speed, unrep-ships are ok,
receiving-ship is onstation, and distance_between_ships are ok.
What operator do you choose?
*fly romeo at dip on rigged side
I will try it, but it is not recommended first when unrep-side must be
rigged-on-deliveryship and romeo_flag must be at-dip-on-delivery-ship.

The following facts are now true:
romeojflag is at-dip-ondelivery-ship, deliveryship is
steady-onorderedcourseandspeed, unrepships are ok, receiving-ship is
onstation, and distance_betweenships are ok.
What operator do you choose?
*rig replenishemnt side

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
romeo_flag is atdip-on-receivingship, receivingship is readyto approach,
unrep-side is rigged-on-receivingship, romeo-flag is atdipon-delivery-ship,
delivery-ship is steady-on-orderedcourseandspeed, unrep-ships are ok,
receiving-ship is on_station, and distance_betweenships are ok.
What operator do you choose?

34

*rig replenishment side
OK.

The following facts are now true:
unrep..side is rigged-on-delivery-ship, romeo-flag is at...dip...on..receiving...ship,
receivin..ship is ready..to-.approach, unrep-side is rigged onreceivin...ship,
romeo-flag is at...dip..ondelivery..ship, delivery-..ship is
steadyon ordered_courseanc-speed, unrepships are ok, receivin...ship is
on_station, and distance_between..ships are ok.
What operator do you choose?
*wait for receiving ship approach
That operator requires that delivery-..ship must be ready..toreceive.

The following facts are now true:
unrep..side is riggedon.delivery.,ship, romeo.f lag is atdip.on~receiving..ship,
receiving..ship is ready..to..approach, unrep..side is rigged onreceivin...ship,
romeo-flag is at...dip...on..delivery...ship, delivery-.ship is
steadyon ordered..course..,an~speed, unrep..ships are ok, receiving-ship is
on_station, and distance_betweenships are ok.
What operator do you choose?
*fly romeo closed up
OK.

The following facts are now true:
deliery..ship is readyto-receive, romeo-flag is closed-upon.delivery..ship,
romeo_flag is atdip.on.receiving..ship, receiving__.ship is ready..,toapproach,
unrep..side is rigged-on-receiving-ship, deliveryship is
steady..on...ordered-courseand..speed, unrep..ships are ok, receiving-.ship is
onstation, and distance_betweenships are ok.
What operator do you choose?
*wait for receiving ship approach
OK.

Please wait a moment until receiving ship is alongside

The following facts are now true:
delivery-ship is ready.to receive, romeo-f lag is closedupon.delivery-ship,
romeo-flag is at-dipon-receiving.ship, receiving-.ship is ready...toapproach,
unrep..side is rigged-on...receivinship, deliveryship is
steady-on-ordered_courseand..speed, unrep..ships are ok, receiving-.ship is
on -station, and distance.between.ships are ok.
What operator do you choose?
*wait for receiving ship approach

*** SORRY, IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
ships are alongside, romeo~f lag is closed.up.on.receivin...ship, delivery-..ship
is readyto..receive, romeojflag is close..up..on-.delivery..ship, unrep-side is

rigged.on-receiving..ship, delivery-..ship is steadyon.ordered..course-and_speed,
unrep..ships are ok, receiving-ship is onstation, and distancebetween_ships
are ok.

What operator do you choose?
*shoot gun line
OK.

35

The following facts are now true:
gunline is shot, ships are alongside, romeo_flag is
closedupon -receiving-ship, delivery-ship is readyto.receive, romeo_flag is
closed-up-on.delivery-ship, unrep-side is riggedon_receivingship,
delivery-ship is steadyonorderedcourse-andspeed, unrep-ships are ok,
receiving-ship is on_station, and distance_betweenrships are ok.
What operator do you choose?
*haul down romeo
That operator requires that first-line must be secured.

The following facts are now true:
gunline is shot, ships are alongside, romeoflag is
closedupon_receivingship, delivery-ship is readytoreceive, romeoflag is
closedupondelivery-ship, unrepside is rigged onreceiving-ship,
delivery-ship is steadyonorderedcourseandspeed, unrep-ships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*wait until receiving ship secures the line
OK.

Please wait a moment until receiving ship secures the first line

The following facts are now true:
gunline is shot, ships are alongside, romeo_flag is
closed_uponreceivinship, deliveryship is readytoreceive, romeo-flag is
closedup-on-delivery-ship, unrep-side is riggedonreceivin.ship,
delivery-ship is steadyon-ordered-course-andspeed, unrepships are ok,
receiving-ship is onstation, and distancebetweenships are ok.
What operator do you choose?
*haul

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
romeoflag is hauleddown_on_receiving-ship, first_line is secured, gun_line
is shot, ships are alongside, delivery-ship is ready-toreceive, romeo-flag
is closedupondelivery-ship, unrep-side is rigged-onreceiving-ship,

delivery-ship is steady-on-ordered courseandspeed, unrep-ships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*haul down romeo
OK.

The following facts are now true:
romeoflag is hauled_down_on_delivery-ship, romeoflag is
hauleddownonreceivin-ship, firstline is secured, ships are alongside,
delivery-ship is readyto_receive, unrepside is rigged on_receivingEship,
delivery-ship is steadyonorderedcourse_and_speed, unrep-ships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*fly bravo at fore
OK.

The following facts are now true:

36

bravo_flag is atfore_on_deliveryship, romeo_flag is
hauleddown_on_deliveryship, romeoflag is hauleddown_on_receivingship,
firstline is secured, ships are alongside, delivery-ship is ready-to-receive,
unrepside is riggedonreceiving_ship, delivery-ship is
steadyonorderedcourseand-speed, unrepships are ok, receiving-ship is
on_station, and distance_betweenships are ok.
What operator do you choose?
*wait until receiving ship flies prep at dip

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
distancebetweenships are changing, receiving-ship is ready-todisengage,
receiving-ship is on.station, bravo_flag is at_fore_on_receivingship,
bravoflag is atfore_ondeliveryship, romeo_flag is
hauleddown_on_deliveryship, romeo_flag is hauled_downonreceiving-ship,
firstline is secured, ships are alongside, deliveryship is readyto-receive,
unrep-side is riggedonreceivingship, delivery-ship is
steady-on orderedcourseandspeed, and unrepships are ok.
What operator do you choose?
*announce fifteen min to disengage
OK.

The following facts are now true:
fifteen_min_todisengage is announced, distance_between_ships are changing,
receivingship is ready-to disengage, receiving-ship is onstation, bravoflag
is atforeonreceivingship, bravoflag is at_fore-ondelivery-ship,
romeoflag is hauleddownon_delivery-ship, romeo-flag is
hauled-down-on-receivingship, firstline is secured, ships are alongside,
delivery_ship is readytoreceive, unrepside is rigged_onreceivingship,
deliveryship is steadyonordered_courseandspeed, and unrepships are ok.
What operator do you choose?
*wait until receiving ship flies prep closed up
OK.

Please wait until the receiving ship starts to disengage

The following facts are now true:
fifteen_min_to_disengage is announced, distance_betweenships are changing,
receiving-ship is ready-to-disengage, receivingship is onstation, bravo-flag
is atforeonreceivingship, bravo_flag is atforeondeliveryship,

romeoflag is hauleddown_on_deliveryship, romeo-flag is
hauleddownon_receiving-ship, first-line is secured, ships are alongside,
deliveryship is readytoreceive, unrepside is riggedonreceivingship,
delivery-ship is steadyonorderedcourseandspeed, and unrepships are ok.
What operator do you choose?
*wait until receiving ship

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
receiving-ship is starting-to-disengage-now, prep-flag is
closed-uponreceiving-ship, distance_betweenships are ok,
fifteen.min-to-disengage is announced, receivinship is readyto_disengage,

37

receiving-..ship is onstation, bravo-flag is at-fore_onreceiving..ship,
bravo_flag is at..foreon delivery..ship, romeojflag is
hauled_down_on_deliveryship, romeo-flag is hauleddownonreceiving.ship,
first-line is secured, ships are alongside, delivery-..ship is readyto..receive,
unrep..side is rigged..on-receiving.~ship, delivery-..ship is
steady oni_ordered~course-and-speed, and unrep..ships are ok.
What operator do you choose?
*disengage
OK.

Yes
:bye

Normal exit from MPROLOG PDSS

38

APPENDIX B. UNREP RECEIVING SHIP DEMONSTRATION

MPROLOG (2.1.0) LOGIC - LAB
(c) 1985 Logicware Inc.

PDSS Program Development Support System

: read metutorll
: read meunreprec
: go.

This is a test of UNREP procedures (RECEIVING SHIP)

Your objectives: disengage is complete.
(Type h after asterisk prompt for help)

Wait a moment while I analyze the problem thoroughly.

The following facts are now true:
unrepships are ok, receiving-ship is onstation, and distancebetweenships
are ok.

What operator do you choose?
*rig replenishment side

" SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
romeoflag is at-dip-ondelivery-ship, delivery-ship is
steadyonordered courseandspeed, unrepships are ok, receiving-ship is
onstation, and distancebetweenships are ok.
What operator do you choose?
*rig replenishment side
OK.

The following facts are now true:
unrep-side is rigged-on-receiving-ship, romeoflag is atdipondeliveryship,
delivery-ship is steady_on_orderedcourseand_speed, unrepships are ok,
receiving-ship is on_station, and distance_betweenships are ok.
What operator do you choose?
*fly romeo at dip on rigged side
OK.

The following facts are now true:
romeo-flag is at-dip-on-receiving-ship, receiving-ship is ready-to-approach,
unrep-side is riggedon receivingship, romeo_flag is at-dip-on-delivery-ship,
delivery-ship is steady_onorderedcourse-andspeed, unrepships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*wait until delivery ship flies romeo closed up

39

OK.
Please wait until the delivery ship is ready to receive

The following facts are now true:
romeo.f lag is at..dip..on-receivingship, receiving..ship is ready..to..approach,
unrep-side is rigged.on...receiving.ship, romeoflag is atdip..on.delivery-.ship,
delivery..ship is steady..on.ordered...course and_speed, unrep..ships are ok,
receivin&-ship is on..station, and distanceetween.ships are ok.
What operator do you choose?
*fly romeo closed up

*** SORRY, IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

*** ** AA ~.A A AA AA AAAA .AA AA

The following facts are now true:
delivery-..ship is ready to_receive, romeo.f lag is closedup-.ondelivery.ship,
romeojflag is at-..dip...on receiving..ship, receiving..ship is ready..to..approach,
unrep..side is rigged..on..receivingship, delivery-..ship is
steady_on_ordered~course and_speed, unrep..ships are ok, receiving-.ship is
on_station, and distance..between.ships are ok.
What operator do you choose?
*fly romeo closed up
OK.

The 'following facts are now true:
romeo_flag is closed.up..on..receivin...ship, receivin&.ship is
commencing-approach, delivery-..ship is ready...toreceive, romeo.f lag is
closed..up..on...delivery..ship, unrep..side is rigged..on..receivin-ship,
delivery..ship is steady..on.orderedcourse-and-speed, unrep..ships are ok,
receiving..ship is on_station, and distance.between..ships are ok.
What operator do you choose?
*approach delivery ship
OK.

The following facts are now true:
ships are alongside, romeo_flag is closed.up..on..receivin...ship, delivery-.ship
is ready..to...receive, romeo_flag is closed.up.on-delivery..ship, unrep.side is

rigged on~receivin..ship, delivery..ship is steadyon-orderedcourse and..speed,
unrep..ships are ok, receiving.ship is on-station, and distance_between_ships
are ok.

What operator do you choose?
*wait until delivery ship shoots gun line
OK.

Please wait for gun line to be shot

The following facts are now true:
ships are alongside, romeoj lag is closed.up...on..receiving..ship, delivery-..ship
is ready-.to...receive, romeo.f lag is closed..up...on..delivery..ship, unrep..side is

rigged on-receiving..ship, delivery-.ship is steady..on..prdered.course.and..speed,
unrep..ships are ok, receiving-.ship is on..station, and distance_betweenships

are ok.
What operator do you choose?
*receive gun line

40

SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
gunline is shot, ships are alongside, romeo_flag is
closed_uponreceiving-ship, delivery-ship is readytoreceive, romeo_flag is
closed_upondelivery-ship, unrep-side is riggedonreceivinship,
delivery-ship is steadyonordered_courseandspeed, unrep-ships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*receive gun line
Not a valid operator--please choose one of: approach delivery ship, disengage,
haul down romeo, decrease speed, rig replenishment side, wait(until,delivery,
ship,flies,romeo,at,dip), increase speed, announce emergency, receive(and,
secure,gun,line), wait(until,delivery,ship,flies,romeo,closed,up), fly(
emergency,closed,up), wait(until,delivery,ship,shoots,gun,line), fly(bravo,at,
fore), fly(romeo,closed,up), fly(romeoat,dip,on,rigged,side), fly(prep,at,dip)

issue rudder command, breakaway, and fly(prep,closed,up).

The following facts are now true:
gun line is shot, ships are alongside, romeo_flag is
closed_uponreceiving-ship, delivery-ship is readyto_receive, romeo_flag is
closedupondelivery-ship, unrep-side is rigged-on-receiving.ship,
delivery-ship is steadyonordered_courseand_speed, unrepships are ok,
receiving-ship is on_station, and distance_betweenrships are ok.
What operator do you choose?
*receive and secure gun line
OK.

The following facts are now true:
firstline is secured, gunline is shot, ships are alongside, romeo flag is
closedup-on-receivingship, delivery-ship is readyto_receive, romeoflag is
closed upondelivery-ship, unrep-side is riggedonreceivin-ship,
delivery-ship is steady-on-ordered_courseandspeed, unrep-ships are ok,
receiving-ship is onstation, and distancebetweenships are ok.
What operator do you choose?
*fly bravo at fore
That operator requires that romeo-flag must be hauled_downon_receivinship.

The following facts are now true:
firstline is secured, gun_line is shot, ships are alongside, romeo-flag is
closed_upon_receiving.ship, delivery-ship is readytoreceive, romeoflag is
closedupon.deliveryship, unrepside is rigged-onreceivingship,
delivery-ship is steady-on-orderedcourse-and-speed, unrep-ships are ok,
receiving-ship is onstation, and distance_betweenships are ok.
What operator do you choose?
*haul down romeo
OK.

The following facts are now true:
romeo_flag is hauleddown on_receivin&-ship, first-line is secured, gun-line
is shot, ships are alongside, deliveryship is ready toreceive, romeo_flag
is closedupondelivery-ship, unrep-side is rigged-on-receivin&-ship,

delivery-ship is steadyonorderedcourse-and-speed, unrep-ships are ok,
receiving-ship is on station, and distancebetweenships are ok.
What operator do you choose?

41

*fly bravo at fore
*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
bravo_flag is at_fore_on_deliveryship, romeo_flag is
hauleddownon_deliveryship, romeo_flag is hauleddown_on_receivingship,
first_line is secured, ships are alongside, deliveryship is readytoreceive,
unrep-side is riggedonreceivingship, deliveryship is
steadyon_ordered_course_andspeed, unrep-ships are ok, receivingship is
onstation, and distancebetweenships are ok.
What operator do you choose?
*fly bravo at fore
OK.
Random change made: fact deliveryship is bearing-ahead added, and
fact receiving-ship is on_station removed.
The delivery ship is bearing slightly ahead of your ship. What do you do?

The following facts are now true:
delivery_ship is bearingahead, bravo-flag is atforeonreceivingship,
bravo_flag is at_foreondeliveryship, romeo_flag is
hauled_down_ondeliveryship, romeo_flag is hauled_downon_receivingship,
firstline is secured, ships are alongside, deliveryship is readyto-receive,
unrepside is riggedonreceiving..ship, delivery-ship is
steadyonordered_courseand_speed, unrep-ships are ok, and
distance_betweenships are ok.
What operator do you choose?
*increase speed
OK.

The following facts are now true:
receivingship is on-station, bravo_flag is at_fore_onreceivingship,
bravo_flag is at_fore_on_deliveryship, romeo_flag is
hauled downondelivery-ship, romeo_flag is hauleddown_on_receiving_ship,
first_line is secured, ships are alongside, deliveryship is ready-toreceive,
unrep-side is riggedon-receivingship, delivery-ship is
steady_on_orderedcourseandspeed, unrep-ships are ok, and
distance_betweenships are ok.
What operator do you choose?
*fly prep at dip
OK.
Random change made: fact distancebetweenships are changing added, and
fact distancebetweenships are ok removed.
The distance line shows a slight change. What should you do?

The following facts are now true:
distance_betweenships are changing, receivingship is ready-to-disengage,
receiving-ship is onstation, bravo_flag is at_foreonreceiving_ship,
bravo_flag is at_fore_on_deliveryship, romeo_flag is
hauled_down_ondelivery-ship, romeo_flag is hauled_downonreceivingship,
firstline is secured, ships are alongside, delivery-ship is ready-toreceive,
unrep.side is rigged-on-receivingship, delivery-ship is
steadyonordered-course_andspeed, and unrep.ships are ok.
What operator do you choose?
*issue rudder command

42

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

The following facts are now true:
fifteen min_to_disengage is announced, distance_betweenships are changing,
receiving-ship is ready todisengage, receivin&gship is on_station, bravo.flag
is at-fore on receiving-ship, bravo-flag is at_foreon_delivery-ship,

romeoflag is hauleddownondeliveryship, romeoflag is
hauleddownon_receiving-ship, first_line is secured, ships are alongside,
deliveryship is ready-to-receive, unrep-side is riggedonreceivingship,
deliveryship is steadyon orderedcourse_andspeed, and unrep-ships are ok.
What operator do you choose?
*issue rudder command
OK.

The following facts are now true:
distance_betweenships are ok, fifteen_min_to_disengage is announced,
receiving-ship is ready.todisengage, receiving-ship is on_station, bravo-flag
is atforeonreceiving-ship, bravo-flag is atfore on deliveryship,

romeo_flag is hauled_downondeliveryship, romeoflag is
hauleddown on-receiving-ship, first-line is secured, ships are alongside,
deliveryship is readytoreceive, unrepside is rigged&onreceiving_ship,
deliveryship is steadyon.orderedcourse_andspeed, and unrep-ships are ok.
What operator do you choose?
*fly prep closed up
OK.

The following facts are now true:
receiving-ship is startingtodisengage-now, prep-flag is
closedupon_receiving-ship, distance_betweenships are ok,
fifteen_min to disengage is announced, receiving-ship is ready-to.disengage,
receiving-ship is onstation, bravo-flag is atforeon_receivingship,
bravo-flag is atjforeon_deliveryship, romeo_flag is
hauleddownon_delivery-ship, romeo_flag is hauled_downonreceivingship,
firstline is secured, ships are alongside, deliveryship is ready-to_receive,
unrep-side is riggedonreceivingship, delivery-ship is
steady-on-orderedcourseandspeed, and unrep-ships are ok.
What operator do you choose?
*disengage

*** SORRY,IGNORED YOUR OPERATOR. OTHER USER JUST CHANGED THE TRUE FACT LIST
here comes the new state:

Yes
: bye
Normal exit from MPROLOG PDSS

43

APPENDIX C. UNREP DELIVERY SHIP KNOWLEDGE BASE

module meunrepdel.

/*$ej ect*/
body.

intro(' This is a test of UNREP procedures (DELIVERY SHIP)')

go :-
tutor([ok(unrepships),

on _stat ion(receiving..ship) ,ok(distance..between..ships)),
[complete(disengage)]).

recommended([ok(unrep..ships)] ,breakaway)
precondit ion(breakaway, fon...emergency(unrep..ships),

announced_on_delivery..ship(emergency),
closed.up.on delivery.~ship(emergency.f lag))

deletepostcondition(breakaway, [on...emergency(unrep-.ships),
announced-on~delivery.ship(emergency),
closeup..on delivery...ship(emergencyjflag)])

addpostcondition(breakaway, [ok(unrep..ships) ,complete(disengage)])

recommended([announced_on_delivery.ship(emergency)] ,announce(emergency))
precondition(announce(emergency),[1on...emergency(unrep..ships)])
deletepostcondition(announce(emergency),[))
addpostcondition(announceC emergency), [announced..ondelivery.ship(emergency)])

recommended([Iclosed.up on_delivery..ship(emergency-flag)],
fly(ernergency,closed,up)).

precondition(fly(emergency,closed,up) ,[on...emergency(unrep..ships)])
deletepostconditlion(fly(emergency,closed,up),

I at-fore_on_deliveryship(bravojflag)])
addpostcondition(fly(emergency, closed, up),

[closed.up.on.delivery..ship(emergency-flag)])

recommended([steadyonorderedcourse.and-speed(delivery..ship)],
steer(to,ordered,course,and,speed)).

precondition(steer(to,ordered,course,and,speed) Ii)
deletepostcondition(steer(to,ordered,course,and,speed) ,[)
addpostcondition(steer(to,ordered,course,and,speed),

[steady..on..orderedcourse and_speed(delivery..ship)])

44

recommended([rigged.on..delivery..ship(unrep..side)] ,rig(replenishment ,side))
precondition(ri g(eleihn, side),

[not rigged..on-delivery-.ship(unrep..side)])
deletepostcondition(rig(replenishment,side),[])
addpostcondition(rig(replenishment ,side),

[rigged.on-delivery...ship(unrepside)])

recommended([at..dip...on..delivery...ship(romeo..flag)J,
fly(romeo,at,dip,on,rigged,side)).

precondition(flyC romeo, at ,dip,on, rigged, side),
[steadyo..orderedcourseand..speed(delivery-.ship)])

deletepostcondition(fly(romeo,at,dip,on,rigged,side),[])
addpostcondition(fly(romeo,at,dip,on,rigged,side),

[at..dip..on-delivery...ship(romeojflag)])

recommended([ready...to..receive(deliveryship)] ,fly(romeo,closed,up))
precondition(fly(romeo,closed,up) ,[atdipondelivery..ship(romeojflag),

rigged on-delivery..ship(unrep..side)?j)
deletepostcondition(fly(romeo,closed,up),

[at-dip..on.,deliveryship(romeoj lag),
rigged on-delivery..ship(unrep..side)])

addpostcondition(fly(romeo,closed,up),[ready...to..receive(deliveryship),
closed-Up.on..delivery..ship(romeojiag)])

recommended([alongside(ships)] ,wait(for,receiving,ship,approach))
precondition(wait(for,receiving,ship,approach),

[readyto..receive(delivery..ship) ,not alongside(ships)])
deletepostcondition(wait(for,receiving,ship~approach),[])
addpostcondition(wait(for ,receiving, ship ,approach),

[alongside(ships)]) .
randsubst(wait(for,receiving,ship,approach) ,[[alongside(ships),

"Please wait a moment until receiving ship is alongside"]])

recommended([shot(gun-line)] ,shoot(gun,line))
precondition(shoot(gun, line),

[alongside(ships) ,readyto.receive(delivery..ship)])
deletepostcondition(shoot(gun,line),[]) .
addpostcondition(shoot(gun,line) ,[shot(gunjline)])

recommended([secured(first..line)J ,wait(until,receiving,ship~secures,the,line))
precondition(wait(until,receiving,ship,secures,the,line) ,[shot(gun.line),

not secured(first_line)]).
deletepostcondition(wait(until,receiving,ship,secures,the,line),[])
addpostcondition(wait(until,receiving,ship,secures,the, line),

[secured(first line)]).
randsubst(wait(until,receiving,ship,secures,the,line) ,[[secured(first -line?

"Please wait a moment until receiving ship secures the first line,],])

recommended(I hauleddown~on..deliveryship(romeojflag) ,haul(down,romeo))
precondition(haul(down,romeo) ,[secured(firstjline) ,shot(gun-line),

45

ok(unrep.ships)])
deletepostcondition(haul(down, romeo),

[closed.up..on delivery..ship(romeo-flag) ,shot(gunjine)])
addpostcondition(haul(down~romeo) ,[hauled down_on_deliveryship(romeojflag)])

recommended([at fore-on-delivery..ship(bravo flag)] ,fly(bravo,at,fore)).
precondition(fly(bravo,at)fore) ,[hauled down_on_delivery..ship(romeo-flag),

ok(unrep..ships)]).
deletepostcondition(fly(bravo,at,fore),[])
addpostcondition(fly(bravo,at,fore),[at..fore..on~delivery..ship(bravo.f lag)])

recommended([ready..to..disengage(receiving..ship)],
wait(until,receiving,ship,flies,prep,at,dip))

precondition(wait(until,receiving,ship,flies,prep,at,dip),
[at-fore-on-delivery-ship(bravo-flag) ,ok(unrep..ships),
not at..dip..on-receiving...ship(prepjflag)]).

deletepostcondition(wait(until,receiving,ship,flies,prep,at,dip),[])
addpostcondition(wait(until,receiving,ship,flies,prep,at,dip),

[reaiy-to-disengage(receiving-ship)]) .
randsubst(wait(until,receiving,ship,flies,prep,at,dip),

[ready..to-.disengage(receiving-ship),
'Please wait until the receiving ship flies prep at dip"]])

recommended([announced(fifteenjnin to_disengage)],
announce(fifteen,min,to,disengage)).

precondition(announce(fifteen,min,to,disengage),
[at-fore-on-deliveryship(bravo _flag) ,ok(unrep.ships),
ready-to-.disengage(receiving..ship)]).

deletepostcondition(announce(fifteen,min,to,disengage) ,[I)
addpostcondition(announce(fifteen,min,to,disengage),

[announced(fifteeni_min_to_disengage)])
randsubst(announce(fifteen,min,to,disengage) ,[[ok(unrep..ships),

on-emergency(unrep.ships) d 5.*Oe-l, 'Steering system failure. $
$What should you do now?])

recommended([starting-todisengage-now(receiving.ship)],
wait(until,receiving,ship,flies,prep,closed,up))

precondition(wait(until,receiving,ship,flies,prep,closed,up),
(announced(fifteen mm _to-disengage) ,ok(unrep..ships),
not closed_up..on..receiving-ship(prep.f lag)]).

deletepostcondition(wait(until,receiving,ship,flies,prep,closed,up),[]))
addpostcondition(wait(until,receiving,ship,flies,prep,closed,up),

[startingto.disengage..now(receiving..ship)])
randsubst(wait(until,receiving,ship,flies,prep,closed,up),

[starting-to-.disengage-now(receiving..ship),
'Please wait until the receiving ship starts to disengage"]])

recommended([complete(disengage)] ,disengage).
precondition(disengage,f starting..to-disengage..now(receiving..ship),

ok(unrep..ships) ,announced(fifteen_min_to_disengage)])
deletepostcondition(disengage,[announced(fifteen-jnin-.to...disengage),

46

at-fore-on-delivery-ship(bravo flag),
secured(first..line),alongside(ships)])

addpostcondition(disengage,[complete(disengage)J)

nopref(steer(to,ordered,course,and,speed) ,rig(replenishment,side))

nopref(announce(emergency) ,fly(emergency,closed,up))

deletepostconditionargs(2)

addpostcondit ion args(2)

endmod /* meunrepdel *

47

APPENDIX D. UNREP RECEIVING SHIP KNOWLEDGE BASE

module meunreprec.

/*$ej ect*/
body.

intro(' This is a test of UNREP procedures (RECEIVING SHIP)').

go :-
tutor([ok(unrepships),

on_station(receiving..ship) ,ok(distaice. between ships)],
[complete(disengage)]).

recommended([ok(unrep..ships)] ,breakaway).
precondition(breakaway,[on...emergency(unrep..ships),

announced_on-receiving..ship(emergency),
closedup.on receiving..ship(emergency..flag)J).

deletepostcondit ion(breakaway, [on-emergency(unrep..ships),
announced-on-receivingship(emergency),
a longs ide(ships),
closedupon receiving...ship(emergencyjflag)]).

addpostcondition(breakaway,1 ok(unrep..ships) ,complete(disengage)]).

recommended([announced_n-receiving..ship(emergency)] ,announce(emergency)).
precondition(announce(emergency) , [on...emergency(unrep..ships)]).
deletepostcondition(announce(emergency) ,[]).
addpostcondition(announce(emergency) ,[announced-on_receiving.ship(emergency)]).

recommended([closed..up on_receiving..ship(emergencyflag)],
fly(emergency,closed,up)).

precondition(fly(emergency,closed,up) ,[on...emergency(unrep..ships)J).
deletepostcondition(fly(emergency,closed,up),4)).
addpostcondition(fly(emergency,closed,up),

[closeup.on.receiving,.ship(emergency.f lag)]).

recommended((on...station(receivingship)] ,increase(speed)).
precondition(increase(speed) ,[bearingahead(deliveryship))ok(unrep..ships)]).
deletepostcondition(increase(speed),4 !,earing..ahead(delivery..ship)]).
addpostcondition(increase(speed) ,[on...station(receiving..ship)]).

recommended(f on_station(receiving.ship)1 ,decrease(speed)).
precondition(decrease(speed) ,(bearing.ahead(delivery..ship)]).
deletepostcondition(decrease(speed),4] ,[ok(unrep..ships)],

"The operator you just applied made$

48

$ the whole situation worst than before. Now there is an emergency!").
addpostcondition(decrease(speed) ,[on...emergency(unrep..ships)]).

recommended([ok(distance between..ships)j ,issue(rudder,command)).
precondition(issue(rudder,command) ,[changing(distance_.between ~ships)]).
deletepostcondition(issue(rudder,command) ,[chaxiging(distance between..ships)]).
addpostconditionC issue(rudder ,command) ,[ok(distance..between..ships)]).
randsubst(issueC rudder, command), [ok(unrep..ships),

on...emergency(unrep..ships) ,4. Oe-l,"Steering system failure. What$
$ should you do now?!"]]).

recommended([rigged..on...receiving..ship(unrep..side)] ,rig(releihmn,sie
precondition(rig(replenishment ,side),

[not rigged-on-receiving..ship(unrep..side)]).
deletepostcondition(rig(replenishment,side),[]).
addpostcondition(rig(replenishment ,side),

friggec-on-receiving..ship(unrep..side)j).

recommended([at..dip...on..delivery...ship(romeo flag)],
wait(until,delivery,ship,flies,r-omeo,at,dip)).

predondition(wait(until,delivery,ship,flies,romeo,at,dip),
fnot alongside(ships),
not at..dip..on delivery..ship(romeo. flag)]).

deletepostcondition(wait(until,delivery,ship,flies,romeo,at,dip),[]).
addpostcondition(wait(until,delivery..hip,flies,romeo,at,dip),

[at-.dip-.on-delivery-shtip(romeo flag)]).
randsubst(wait(until,delivery,ship,flies,romeo,at,dip),

[at-dip-on -delivery..ship(romeojflag),
'Please wait a moment until delivery ship flies romeo at the dip"]]).

recommended([readyto..approach(receiving-.ship)],
fly(romeo,at,dip,on,rigged,side)).

precondition(fly(romeo,at,dip,on,rigged,side),
[rigged..on...receiving..ship(unrep..side),
at-dip.on..delivery..ship(romeo-flag)]).

deletepostcondition(fly(romeo,at,dip,on,rigged,side),[]).
addpostcondition(fly(romeo,at,dip,on,rigged,side),

[at..dip..on receiving-.ship(romeo-flag),
readyto..approach(receiving..ship)]).

recommended(f closed-up-.on delivery..ship(romeo-flag)],
wait(until,delivery,ship,flies,romeo,closed,up)).

precondition(wait(until,delivery,ship,flies,romeo,closed,up),
[ready..to-.approach(receiving.ship),
not closed-.up-on_delivery..ship(romeo.flag)]).

deletepostcondition(wait(until,delivery,ship,flies,romeo,closed,up),[]).
addpostcondition(wait(until,delivery,ship,flies,romeo,closed,up),

[closeup.on.delivery..ship(romeo.f lag)]).
randsubst(wait(until,delivery,ship,flies,romeo,closed,up),

[1closed..up-o.n-.delivery..ship(romeo.f lag),
'Please wait until the delivery ship is ready to receive"]]).

49

recommended([commencin...approach(receiving..ship)] ,flyC romeo, closed ,up)).
precondition(fly(romeo,closed,up) ,fready..to..approach(receiving..ship),

closed.up.on-delivery..ship(romeo-.f lag)]).
deletepostcondition(fly(romeo, closed,up) ,[fat...dip...on..receiving...ship(rome...f lag),

ready..to...approach(receiving.ship)]).
addpostconditionC flyC romeo, closed,up) ,[closed..up..on...receiving..ship(rome.-f lag),

commenc ing...approach(rece iving-ship)]).

recommended([alongside(ships)] ,approach(delivery,ship)).
precondition(approach(delivery,ship) , [commencing...approach(receiving..ship)j).
deletepostcondition(approach(delivery,ship),

[commencing..approach(receiving..ship)]).
addpostcondition(approach(delivery ,ship) , [alongside(ships)]).

recommended([shot(gun..line)I ,wait(until,delivery,ship,shoots,gun,line)).
precondition(wait(until,delivery,ship,shoots,gun, line),

[alongside(ships) ,not shot(gunjline)]).
deletepostcondition(wait(until,delivery,ship,shoots,gun,line),[J).
addpostcondition(wait(until,delivery,ship,shoots,gun,line),[shot(gunjline)]).
randsubst(wait(until,delivery,ship,shoots,gun,line),

[[shot(gun..line),"Please wait for gun line to be shot"]]).

recommended([secured(first_line)] ,receive(and,secure,gun, line)).
precondition(receive(and,secure,gun,line) ,[alongside(ships) ,shot(gun..line)]).
deletepostcondition(receive(and,secure,gun,line),[]).
addpostcondition(receive(and,secure,gun, line) ,[secured(first_line)]).

recommended([hauled_down_o_receiving..ship(romeojflag)] ,haul(down,romeo)).
precondition(haul(down,roneo) ,[secured(first-line)]).
deletepostcondition(haul(down,romeo),[closed..up...on..receiving..ship(romeo.f lag)]).
addpostcondition(haul(down,romeo) ,[hauled_down_on-.receiving,.ship(romeo.f lag)]).

recommended([at_fore_on_receiving..ship(bravojflag)] ,fly(bravo,at,fore)).
precondition(fly(bravo,at,fore) ,(hauleddown..on-receiving..ship(romeo flag)]).
deletepostcondition(fly(bravo,at,fore),[]).
addpostcondition(fly(bravo,at,fore) ,[atjfore..on-receiving..ship(bravo flag)]).
randsubst(fly(bravo,at,fore),[[on...station(receiving..ship),
bearing..ahead(delivery.ship) ,7. Oe-1,"The delivery ship is bearing slightly $
$ahead of your ship. What do you do? 11).

recommended((ready..to..disengage(receiving..ship)] ,fly(prep,at,dip)).
precondition(fly(prep,at ,dip),

[at-fore-on-receiving.ship(bravo.f lag),
on_station(receiving.ship)]).

deletepostcondition(fly(prep,at,dip) ,[]).
addpostcondition(fly(prep,at,dip) ,[ready-.to...disengage(receiving...ship)]).
randsubst(fly(prep,at ,dip),([fok(distance..between..ships),
changing(distance-between..ships) ,6. Se-l,"The distance line shows a $

50

changing(distane between..ships),6.5e-l,"The distance line shows a
$slight change. What should you do?"]]).

recommended([starting-..to.disengagenow(receiving-ship)] ,fly(prep,closed,up)).
precondition(fly(prep,closed,up) ,(ok(distance_between..ships),

ready.todisengage(receivin...ship)]).
deletepostcondition(fly(prep,closed,up),[]).
addpostcondition(flyC prep, closed,up) , [starting-to-.disengage-now(receiving.ship),

closedup on~receiving..ship(prepjflag)]).

recommended([complete(disengage)] ,disengage).
precondition(disengage, [starting.to..disengag...now(receiving-ship)I).
deletepostcondit ion(disengage,[Iready..to..disengage(receiving..ship),

at..fore on-receiving.ship(brav...f lag),
secured(first~line) ,alongside(ships)]).

addpostcondition(disengage , fcomplete(disengage) ,hauled_down(prep.f lag)]).

nopref(announce(emergency) ,fly(emergency,closed,up)).

deletepostcondition.args(2).
deletepostconditionargs(4).

addpostconditionargs(2).

endmod /* meunreprec *

SI

APPENDIX E. METUTORI I SOURCE CODE

NOTE: The code contained herein was written by, and used with the permission
of Professor Neil C. Rowe of the Naval Postgraduate School.

*A preceding asterix means that the predicate has been modified
by the author of this thesis.

+ A preceding plus sign means that the predicate has been added by
the author of this thesis.

module metutorll.

export (tutor / 2).

import (addpostcondition / 2,addpostcondition / 3,
addpostcondition / 4,addpostconditionargs I1,
deletepostcondition / 2,deletepostcondition I4,
deletepostcondition args / ,precondition /2,randsubst /2,
recommended / 2).

/*$ej ect*/
body.

dynamic(readbuff/ 1).
dynamic(top..goal/ 1).
dynamic(op...list/ 1).
dynamic(top...solution/ 1).
dynamic(randseed/ 1).
dynamic(mainline_states/4).
dynamic(cached/4).
dynamic(debugflag/O).
dynamic(unsolvable/2).
" dynamic(time..stamp/l).
" dynamic(ts-.violation/O).

/**** PROBLEM-INDEPENDENT CODE FOR MEANS-ENDS TUTORING

*tutor(STATE,GOAL) :
not check.obvious..errors, do..intro, write("Your objectives:")

writelist(GOAL,state), write("."), nl,
write("(Type h after asterisk prompt for help)"), nl(2),
uniqueassert(top-.goal(GOAL)), bagof(X,PAprecondition(X,P),XL),
uniqueassert(op.list(XL)),
write("Wait a moment while I analyze the problem thoroughly."), nl,
oncemeans.ends(STATE ,GOAL ,OPLIST2 ,GOALSTATE2),
uniqueassert(top..solution(STATELIST)),
del-all..statements(mainline..states/4),

52

update..fact...file(O,[]B,
asserta(time..stamp(O)),
means_ends..tutor(STATE ,GOAL,OPLIST,GOALSTATE ,[],[]), ni,
ni, 1

tutor(STATE,GQAL)-
write("Too bad: a solution is now impossible."), ni, I

means.ends..tutor(STTE,GOAL, [I,STATE, STACK,GOALSTACK):-
difference(GOAL,STATE,1]), I.

means..ends.tutor(STATE ,GOAL,OPLIST,STATE ,STACK,GOALSTACK)-
member([STATE,GOAL] ,STACK), I , fail.

meaxis..endstutor(STATE ,GOAL,OPLIST ,STATE ,STACK ,GOALSTACK) -

not oncemeans.ends(STATE,GOAL,OPLIST,GOALSTATE), 1, fail
means-ends..tutor(STATE, GOAL,OPLIST, GOALSTATE ,STACK, GOALSTACK)-

difference(GOAL,STATE,D), applicable..op(D,OP),
precondition(OP,PRELIST), all_achievable(STATE,PRELIST),
apply..op(QP ,STATE ,STATE2),
once_means.ends(STATE2 ,GOAL,OPLIST2 ,GOALSTATE2), I,
means-ends..tutor(STATE ,PRELIST,PREOPLIST,PRESTATE, [[STATE ,GOAL] I

STACK] ,IGOALIGOALSTACK]), 1,
met(STATE ,GOAL,OPLIST,GOALSTATE ,STACK, PRELIST, PREOPLIST,PRESTATE,

OP,D,GOALSTACK).

met (STATE ,GOAL, PREOPLI ST, PRESTATE ,STACK, PRELI ST, PREOPLI ST, PRESTATE ,OP ,D
GOALSTACK) :-

difference(GOAL,PRESTATE,4J), I
met(STATE,GOAL,PREOPLIST,PRESTATE,STACK,PRELIST,PREOPLIST,PRESTATE,OP,D,

GOALSTACK) :-
higher...goal_achieved(GOALSTACK, PRESTATE),

met(STATE ,GOAL,OPLIST,GOALSTATE ,STACK,PRELIST,PREOPLIST,PRESTATE ,OP ,D,
GQALSTACK) : -

difference(GOAL,PRESTATE,D2), not applicable..op(D2,OP),
means-ends-tutor(PRESTATE ,GOAL,OPLIST2 ,GOALSTATE ,I] ,GOALSTACK),
append(PREOPLIST,OPLIST2 ,QPLIST).

*met(STATE,GOAL,OPLIST,GOALSTATE,STACK,PRELIST,PREOPLIST,PRESTATE,OP,D,

GOALSTACK):-
writedebug8(OP),

check_with_student(OP,PRESTATE,D,NEWOP),
get-deletepostcondition(NEWOP ,PRESTATE ,DELETEPOSTLIST),
print-..optional messaged(NEWOP,PRESTATE),
deleteitems(DELETEPOSTLIST,PRESTATE ,PRESTATE2),
get...addpostcondition(NEWOP ,PRESTATE ,ADDPOSTLIST),
print..optional...messagea(NEWOP ,PRESTATE),
union(ADDPOSTLIST, PRESTATE2 ,POSTLIST2),
do..randsubst(NEWOP ,POSTLIST2 ,POSTLIST),
check..mainline..return(POSTLIST) ,timestamp(TS),
retract(time stamp(TS)),NTS is TS+l,asserta(time..stamp(NTS)),
update..fact..file(NTS,POSTLIST),!,
means-ends-.tutor(POSTLIST,GOAL, POSTOPLIST,GOALSTATE ,[] ,[GOAL I

GOALSTACKI), append(PREOPLIST,fNEWOPIPOSTOPLIST ,OPLIST)
+ met(STATE,GOAL,OPLIST,GOALSTATE,STACK,PRELIST,PREOPLIST,PRESTATE,OP,D,

GOALSTACK) :-
ts...violation,retract(ts..violation) ,retract(time..stamp(TS)),
nl,write("*** SORRY,IGNORED YOUR OPERATOR. OTHER$
$USER JUST CHANGED THE TRUE FACT LIST"),nl,

53

write("here comes the new state:"),nl,
read..fact..file(NTS,NEWSTATE) ,asserta(timestamp(NTS)),
means_ends_tutor(NEWSTATE ,GOAL, OPLIST, GOALSTATE ,STACK, GOALSTACK).

do_intro : -
intro(T),nl(2), write(T), nl(2), I

dojintro.

/**** PROBLEM-DEFINITION ERROR CHECKING */

check-obvious-errors : -
setof([M,A] ,obvious-error(M,A),MAL), I, writepairlist(MAL)

obvious...error("precondition fact missing for operator 11,O):-

recommended(D,O), not precondition(O,L).
obvious..error("deletepostcondition fact missing for operator ",O)-

recommended(D,O), not get-.deletepostcondition(O, S,L) ;
obvious..error("addpostcondition fact missing for operator 0O):-

recommended(D,O), not get-.addpostcondition(O,S,L)*
obvious..error("$"recommended$" fact missing for operator ",O)

precondition(O,L), not recommended(D,O). l)obvious...error("$"recommended$" fact missing for operator "O
get..deletepostcondition(O,S,L), not recommended(D,O)

obvious...error("$ recommended$" fact missing for operator 11,0)
get...addpostcondition(O,S,L), not recommended(D,O)

/AA HANDLING OF RANDOMNESS */

do-randsubst(O,S,NS) :
randsubst(O,RL), ! , do...randsubst2(RL,S,NS)

do-randsubst(O,S,S).

do-randsubst2([] ,S,S)
" do...randsubst2(--F-IL-,S,NS)

member(F,S) ,delete(F,S,S2),! ,do.randsubst2(L,S2,NS).
" do_randsubst2(--F,M-jL-,S,NS) :

member(F,S),delete(F,S,2),nl,write(M),nl,do.randsubst2(L,S2,NS).
do-randsubst2([[F,NF,PJ ILl ,S,NS) :

rand(1000,K), P1000 is P*1000, K=<Pl000, changestate(F,NF,S,S2), 1,
do...randsubst2(L,S2,NS).

do _randsubst2([[F,NF,P,MJ IL] ,S,NS)
rand(1000,K), P1000 is P*1OOO, K-<P1000, changestate(F,NF,S,S2), 1,
write(M), ni, do...randsubst2CL,S2,NS)

do..randsubst2([CILI ,S,NS)-
do..randsubst2(L,S,NS)

changestate(none,NF,S,[NF IS])-
I , not member(NF,S), write("Random change made: fact")
writefact(NF,state), write(" added."), ni, I

changestate(F,none,S,S2) : -
1, member(F,S), delete(F,S,S2),I write("Random change made: fact "
writefact(F,state), write(" removed."), ni, I

changestate(F,NF,S,[NFIS3])-

54

I, member(F,S), delete(FSS3?, write("Random change made: fact")
writefact(NF,state), write('added, and"), ni, write("fact")
writefact(F,state), write(" removed."), ni, I

permutation(][JL)

permutation(L,[IIPLI)
randitem(L,I), delete(I,L,L2), permutation(L2,PL)

randitem(L,I1):
length(L,N), rand(N,KMl), K is KMl+l, item(K,L,I)

rand(N,K) :

KR is random*N, K is int(KR)

item(K[] ,I)-
I , fail

item(K,[XJL] ,X):-

item(K,[XIJ ,Y):-

KM is K-1, item(KMl,L,Y)

/h** TUTORING RULES ****/

*checkwith student(O,S,D,NO)
writ (*******e*********************** nl,

write('tThe following facts are now true:"), nl, writelist(S,state),
write("."), nl, write("What operator do you choose? "), nl,
niceread(A02),! ,check time..stamp, space-..parse(A02,03),!,
handle-student..op(03,O,S,D,NO)

handle-student r, op(O,O,S,D,O):-
! , write("OK. "), nl

handle..student op('',O,S,D,NO)
!check-with_student(O,S,D,NO)

handle-student-op(02,O,S,D,NO) :
helpword(02), ! , opjlist(OL), permutation(OL,POL),
write("The possible operators are: "), writelist(POL,op),
write("."), nl, write("Your objectives are: "), top...goal(G),
writelist(G,state), write("."), nl,! , checkwith-student(O,S,D,NO)

handle-student..op(02,O,S,D,O) :
op...list(OL), not singlemember(02,OL), fixspell(02,O), 1

write("I assume you mean ",writeCO), write("."t), nl
handle-student-op(02,0,S,D,NO)

op..jist(OL), not singlemember(02,OL), backtracking..member(O3,OL),
fixspell(02,03), 1 , write("I assume you mean "), write(03),
write("."), nl, handle..student...op(03,,S,D,NO)

handle-student-op(02,O,S,D,NO) :
op...ist(OL), not singlemember(02,QL),
write("Not a valid operator--please choose one of:")
permutation(OL,POL), writelist(POL,op), write("."), nl,
check_with_student(Q,S,D,NO)

handle-.student...op(02,O,S,D,NO) : -
precondition(02,P02), difference(P02,S,D2), not D2=[], 1,

write("That operator requires that "), writelist(D2,precond),

55

write("."), ni, check..with..student(O,S,D,NO)
handle..student...op(02,,S ID,NO :-

apply..op(02,S,S), write('That will not affect anything."), ni,
check_with..student(O,S,D,NQ)

handle_student..op(02,O,S,D,NO) :-
apply..op(02,S,S2), top...goal(G), not once_means_ends(52,G,0L2,GS2),
write("You cannot ever succeed if you do that."), ni,
check-with-student(O,S,D,NO)

handle -student..op(02,O,S,D,02) :
top...goal(G), apply..op(O,S,S3), apply..op(02,S,S2),

compare solutions(S3,G,0L3,GS3,S2,G,0L2,GS2),
subsequence([010L3] ,0L2), ! , apply-ops((010L31 ,S,SL,G54),
elimdugs(SL,ESL), asserta(mainline_states(ESL,02,S,O)),
write(That does not seem immediately helpful, but I will try it."

), nl.
handle_student-op(02,O,S,D,02)

nopref(02,O), !, write("OK."), ni
handle...studentop(02,O,S,D,02) :-

nopref(O,02), !, write("OK."), nl
handle_student..op(02,O,S,D,02) :

top...goal(G), once_means_ends(S,G,OL,FS), not member(02,OL), I,
write("I will try it, but it is not recommended or needed for the$

$ problem."), ni
handle-student..op(02,O,S,D,02)

top...goal(G), difference(G,S,D2), all_achievable(S,D2),
applicable..op(D2,03), precondition(03,PL),
least common..op(S,G,,02,PL,GROQT), !,
write("I will try it, but it is not recommended first when")
difference(GROOT,S,D5), delete_uncreatable(D5,D6),
permutation(D6,D7), writelist(D7,precond), write("."), nl

handle_student..op(02,O,S,D,02) :
write("Not the operator I would choose, but let us try it."), nl,I

/**INTERMEDIATE PREDICATES USED BY THE TUTOR**/

least...common..op(S,G,O,2,G2,G) :-
once...means..ends(S,G2,OL,NS), least_common..op2(O,02,OL)

least..common op(S,G,O,02,G2,DROOT) :-
difference(G2,S,D), all...achievable(S,D), applicable..op(D,03),

precondition(03,G3), least...common..op(S,G2,,02,G3,DROOT),

least..common-op2(O,02,OL)
not member(O,OL), I

least_common-op2(O,02,OL)
not member(02,OL),!

compare...solutions(3,G,L3,GS3,S2,G,0L2,GS2)-
once..means..ends(S3,G,0L3,GS3), once_means..ends(2,G,0L2,G52), I

cache...states(S,G,[I ,GS)-

cache-states(S,GOL,GS)
cached(S,G,OL,GS), I

cache...states(S,G,OL,GS) :-
cached(S2,G2,0L2,GS2), checkpermutation(S,S2),

56

check..permutation(G,G2), I
cache...states(S,G,[OIOL ,GS) :-

asserta(cached(S,G,[OIOL] ,GS)), applyop(O,S,NS),
cache..states(NS,G,OL,GS), I

apply..ops[] ,S,[S] ,S)-

apply...opsQ[OjOL] ,S,[SISLI ,NS)-
apply..op(O,S,S2), apply..ops(OL,S2,SL,NS)

* ~apply..op(O,S,NS)
get...deletepostcondition(O,S,DP), deleteitems(DP,S,S2),
get...addpostcondition(O,S,AP) * union(AP,S2,NS), I

helpword(help)
helpword(h).
helpword(huh)

check~mainline..eturn(S)-
mainlinestates(SL,O,QS,BO), check-mainline _return2(S,SL,O,OS,BO)

check_mainlinereturn(S).

check~mainline_return2(S,[S2ISL] ,O,OS,BQ)
permutemember(S,[S2]), !
write("You are returning to a previous state."), ni

check_mainline~return2(S,SL,O,QS,BQ)
permutemember(S,SL), 1,

write("Do you see now that your choice of the "), write(Q),
write(" action in the state with the facts ["),
writelist(OS,state), write(") was not the best choice; the)
write(BO), write(" action would have been better."), nl,
del-statement(mainlinestates(SL,O,QS,BQ))

higher...goalachieved(GL,S) :-
higher..goal-achieved2(GL,S)

higher..goal-achieved2I] ,S)-
1,fail.

higher..goal-achieved2(EGIGL] ,S)-
difference(G,S,Ij), I.

higher..goal-achieved2([GIGL] ,S)-
higher-.goal-achieved2(GL,S)

/**NATURAL LANGUAGE OUTPUT HANDLER ~~

writelist([] ,R)-

writelist([X] ,R)-
!writefact(X,R)

writelist([X,Y] ,R) :-
I , writefact(X,R), write(" and "), writefact(Y,R)

writelist(L,R) :-
writelist2(L,R)

57

writelist2([X] ,R)-
! , write("and ",writefact(X,R)

writelist2([XIL] ,R) :-
writefact(X,R), write(", "), writelist2(L,R)

writefact(F,state) :-
atom(F), writec2'it is "), writeCF), I

writefact(not F,state) :
atom(F), 1 , write("it is not "), write(F), I

writefact(not F,state) :
F=.. (P,X', atom(X), 1 , write(X), is...form(X,IX), write(IX),

writeC'not 11), write(P), I
writefact(not F,state) :

F=. .[P,XJ], writefact(X), is-.form(X,IX), write(IX), write("not")
write(P),

writefact(not F,state)-
F=.. [P,X,YI , write(P), write(" not "), write(X), write(")

write(Y), I
writefact(F,state)-

F=.. [P,X] , atom(X), 1, write(X), is..form(X,IX), write(IX), write(P),

writefact(F,state)-
F=.. [P,X] , ! , writefact(X,state), is_form(X,IX), write(lX), write(P),

writefact(F,state)-
F=.. [P,X,Y] , ! , write(P), write(" "), write(X), write(" "), writeCY), I

writefact(F,precond) :-
atom(F), write("it must be "), write(F), I

writefact(not F,precond) :-
atom(F), ! , write("it must not be "), write(F), I

writefact(not F,precond) :
F=..P,X], atom(X), I, write(X), write(" must not be),write(P),I

writefact(not F,precond) :-
F=.. [P,XJ , ! , writefact(X,state), write(" must not be ",write(P),

writefact(not F,precond)
F=.. [P,X ,Yl,i I, write(P), write(" must not be "), write(X),
write(" 1), write(y), I

writefact(F,precond) :-
F=. .[P,X] , atom(X), ! , write(X), write(" must be),write(P),I

writefact(F,precond) :-
F=.. [P,X] , ! , writefact(X,state), write(" must be ",write(P),I

writefact(F,precond) :-
F=.. [P,X,YJ , write(P), write(" must be "), write(X), write("",
writeCY), I

writefact(F,op) :-
F=.. [P,A] , write(P), write(" "), write(A), I

writefact(F,op) :-
F=. . [P,A,B] , write(P), write(" "), writeCA), write("),write(B), I

writefact(F,op)-
write(F), I

writefact(F,R)-
write(F)

/*A simple heuristic is used 11for plurals: the thing before the "is"*/
/*is plural if it ends in "s"/
isjform(X," is ") : -

not atom(X),
is~form(X," are :-

name(X,NX), last(NX,115), I
isjform(X," is "I).

/*%*** ORIGINAL MEANS-ENDS PROGRAM */

once-means..ends(STATE ,GOAL,OPLIST ,GOALSTATE)-
meansends (STATE ,GOAL, OPLI ST, GOALSTATE),
cache_states(STATE,GOAL,OLIST,GOALSTATE), I

means.ends(STATE ,GOAL, OPLIST,GOALSTATE) : -
means_ends2(STATE ,GOAL,OPLIST,GOALSTATE,,[IX, writedebug?

means~ends2(STATE ,GOAL, OPLIST ,GOALSTATE ,STACK) : -
cached(STATE2 ,GOAL2,OPLIST, GOALSTATE), check...permutation(GOAL, GOAL2),

check..permutation(STATE,STATE2), ! , writedebug6(STACK),
means_ends2(STATE ,GOAL,OPLIST ,GOALSTATE ,STACK) :-

member([STATE,GOAL] ,STACK), !, writedebug4(STATE,GOAL,STACK), fail
means...ends2(STATE,GOAL,[,STATE,STACK) -

difference(GOAL,STATE,[I),!.
means_ends2(STATE, GOAL, OPLIST, GOALSTATE, STACK) -

difference(GOAL,STATE,D), applicable..op(D,OPERATOR),
precondition(OPERATOR,PRELIST), all_achievable(STATE,PRELIST),
writedebugl(D,OPERATOR, STACK),
means_ends2(STATE ,PRELIST,PREOPLIST, PRESTATE, [[STATE ,GOAL] ISTACK]),
writedebug2(PRESTATE ,D ,OPERATOR, STACK),
get..deletepostcondition(OPERATOR, PRESTATE ,DELETEPQSTLIST),
delete items(DELETEPOSTLIST,PRESTATE ,PRESTATE2),
get..addpostcondition(OPERATOR,PRESTATE ,ADDPOSTLIST),
union(ADDPOSTLIST, PRESTATE2, POSTLIST),
means_ends2(POSTLIST ,GOAL,POSTOPLIST,GOALSTATE ,[[STATE ,GOAL] ISTACK

), writedebug3(GOALSTATE ,OPERATOR ,STACK),
append(PREOPLIST, [OPERATOR IPOSTOPLIST] ,OPLIST)

means_ends2(STATE ,GOAL,OPLIST,GOALSTATE ,STACK):-
writedebug5(STATE,GOAL,STACK), 1 , fail

/**** DEBUGGING TOOLS**/

writedebugl(D,O,STACK)-
not debugf lag, !

writedebugl(D,O,STACK):
length(STACK,NMI), N is NMl+l,? write("' Operator),write(O),
write(" suggested at level "), write(N), nl,
write(1tto achieve difference of ["), writelist(D,state),
write(")j"), nl, I

writedebug2(S,D,O,STACK) -

not debugf lag, I.
writedebug2(S,D,O,STACK) -

length(STACK,NMl), N is NMl+l, write(" >Operator "), write(O),
write(" applied at level "), write(N), ni,
write("itto reduce difference of ["), writelist(D,state), write("]")

59

not debugf lag,
writedebug3(S,O,STACK)

length(STACK,NMl), N is NMl+l, write("> Level "), write(N),
write(" terminated at state in which "), writelist(S,state), ni, I

writedebug4(S,G,STACK)-
not debugf lag,

writedebug4(S,G,STACK)-
write(" >Reasoning avoided an infinite loop at level")

length(STACK,NMl), N is NMl+l, write(N),
write(" where problem was identical to that at level")
index([S,G],STACK,I), write(l), nl, I

writedebug5(STATE,GOAL,STACK)-
not debugf lag, I.

writedebug5(STATE,GOAL,STACK)-
writeC'> Usolvable problem at level),length(STACK,Nml),
N is Nil+l, write(N), nI, write("for state
writelist(STATE,state), nl, write("and goal ,
writelist(GOAL,state), nl,

writedebug6(STACK)-
not debugflag,

writedebug6(STACK)-
writeC'>> Previously computed solution used at level I)

length(STACK,NMl), N is NI'l+l, write(N), nl,

writedebug7 :-
not debugf lag,

writedebug7-
nl,!

writedebug8(OP)-
not debugflag,

writedebug8(OP) :-
write(tThe tutor prefers operator")

write(OP) , nl, !

SUTILITY FUNCTIONS**/

delete-uncreatable([] ,[])
delete-uncreatable([X IL] ,M)-

uncreatable(X), ! , delete_uncreatable(L,M)
delete-uncreatable([XILI,[XIMI)

delete-uncreatable(L,M)

all...achievable(S,G) :-
difference(G,S,D), not unachievable.member(D)

unachievable..member(D) :-
backtracking..member(F,D), uncreatable(F)

uncreatable(F)-
precondition(O,L), backtrack-~ng...member(F,L), not in-postcondition(F)

60

in...postcondition(not F)-
any..deleteposteondition(O,DPL), member(F,DPL), I

in-postcondition(not F) :-
randsubst(O,RSL), member([F,X,Y,Z] ,RSL),

in.postcondition(not F) :-
randsubst(O,RSL), member([F,X,Y] ,RSL), I

in..postcondition(F) :-
not F=..[not,PI, any...addpostcondition(O,APL), member(F,APL), I

in..Postcondition(F) :-
not F=..[not,P] , randsubst(O,RSL), member([X,F,Y,Z] ,RSL), I

in..postcondition(F) :-
not F=.. [not,P] , randsubst(O,RSL), member([X,F,Y] ,RSL), I

any-.deletepostcondition(Q,L)-
deletepostcondition(0, L)

any-addpostcondition(0,L)-
addpostcondition(O,L)

get...deletepostcondition(O,S,L)-
deletepostcondition .args(4), deletepostcondition(O,C,L,M),

factsubset(C,S),
get...deletepostcondition(0,S,L) -

-deletepostcondition.args(3), deletepostcondition(0,C,L),
factsubset(C,S),!.

get..deletepostcondition(0,5,L)-
deletepostcondition.args(2), deletepostcondition(0,L)

get-addpostcondition(0,S,L) :-
addpostcondition args(4), addpostcondition(0,C,L,M), factsubset(C,S),

get-addpostcondition(0,S,L)-
addpostcondition args(3), addpostcondition(O,C,L), factsubset(C,S),

get..addpostcondition(0,S,L)
addpostcondition args(2), addpostcondition(0,L)

print..optionalmessage.d(0,S) :-
deletepostcondition..args(4), deletepostcondition(0,C,L,M),

factsubset(C,S), wi.'te(M), ni,
print-optional_message.d(,S)-

print..optional~jnessage..a(0,S)-
addpostcondition..args(4), addpostcondition(Q,C,L,M), factsubset(C,S),
write(M), ni,!.

print~optional message.a(0,S)-
I .

applicable-op(D,O)-
recommended(D2,0), subset(D2,D)

fixspell(W1,W2)-
atom(W1), atoni(W2), ! , name(W1,AWl), fixspell2(AW1,AW2),

61

name(W2,AW2)
fixspell(Wl,W2) :-

structure(W1,list,[P1IL]), structure(W2,list,[P2IL]), not P1=P2,
i ,fixspell(P1,P2)

fixspell(Wl,W2) :-
structure(W1,list,[P,QlJLJ), structure(W2,list,[P,Q2IL]), not Q1=Q2,
!, fixspell(Ql,Q2)

fixspell(Wl,W2) :-
structure(Wl,list,[P,Q,RlIL]), structure(W2,list,[P,Q,R2jLj),
not R1=R2, I , fixspell(Rl,R2)

fixspell2(AW,AW2) :-
deleteone(X,AW,AW2)

fixspell2(AW,AW2) :-
deleteone(X,AW2,AW)

fixspell2(AW,AW2) :-
transpose(AW,AW2)

transpose([X,YILI ,[Y,XIL])
transposeQ X IL] , [X IMI

transpose(L,M)

deleteone(X,[XILI ,L)

deleteone(X,L,M)

difference([],S,[]).
difference([not PIG] ,S,G2)-

not singlemember(P,S), Idifference(G,S,G2)
difference([PlGl,S,G2) --

singlemember(P,S), I , difference(G,S,G2)
difference[PIGJ,S,[PIG2I) -

difference(G,S,G2)

subset([] ,L).
subset([XIL],L2)

singlemember(X,L2), subset(L,L2)

factsubset([] ,L).
factsubset([not PILl ,L2)-

not singlemember(P,L2), 1 , factsubset(L,L2)
factsubset([not PILl ,L2)

I , fail 'factsubset([PILI ,L2)-
singlemember(P,L2), factsubset(L,L2)

rnember(X,L) :-
singlemember(X,L)

singlemember(X,(XIL])-

sIngeeme.~ tI
singleember(X,L)

62

append((],L,L)
append([XIL],L2,[XIL3])

append(L,L2,L3)

union([] ,L,L).
union([XIL1I ,L2,L3)-

singlemember(X,L2), I , union(L1,L2,L3)
unionQXjLl],L2,[XjL3])

union(Ll,L2,L3)

deleteitems([] ,L,L)
deleteitems([XJLJ ,L2,L3)-

delete(X,L2,L4), deleteitems(L,L4,L3)

delete(X,[] , []).
delete(X,[XILI ,M)-

!delete(X,L,M)
delete(X [Y IL] ,[YI M]

delete(X,L,M).

check..perrutation(L,M)-
subset(L,M), subset(M,L),

subsequence((j ,L)-

subsequence([XIL] ,[XIM])-
1subsequence(L,M)

subsequence(L,[XIMI)-
subsequence(L,M)

permutemember(X,IXIL])-

permutemember(X, (Y IL])
subset(X,Y), subset(Y,X), I

permutenlember(X,[YIL])-
perznutemember(X,L)

last([X] ,X).
last([XIL],Y)

last(L,Y)

e-limdups([l,[l)
elimdups([XILI ,M)-

singlemember(X,L), 1 , elimdups(L,M)
elimdups([XIL] ,[XIM])-

elimdups(L,l)

uniqueassert(Q) :-
delstatement(Q), Iadd-statement(Q)

uniqueassert(Q) :-
add statement(Q)

backtracking..member(X,[XIL])
backtracking..member(X,[YIL])-

backtracking-.member(X,L)

63

/* INPUT/OUTPUT HANDLER */

space~parse(I 321AS11 ,Sl) :-
space...parse(ASl,Sl), I

space...parse(AS1,S1) :-
not member(32,AS1), remove~ugly..chars(ASl,AS2), name(Sl,AS2), I

spaceparse(AS1,S2) :-
remove..ugly..chars(ASl,AS2), append(Ll,[321L2] ,AS2), narne(Nl,Ll),
parse..args(L2,N2), S2=..[NlIN2J

parse..argsQtI
I .

parse-args([321AL] ,L)
parse..args(AL,L), I

parse-.args(AL,[Ll) :-
not member(32,AL), name(L,AL), I

parse...args(AL,[NlIN2]) :-
append(Ll,[321L2] ,AL), name(Nl,L1), parseargs(L2,N2),

removeugly.chars([],] .H
remove..ugly...chars([XILJ ,M)-

,X<65, not X=32, ! , remove..ugly...chars(L,M)
remove.ugly...chars(QXjL] ,[XlN])-

remove..ugly...chars(L,M)

niceread(L) :-
checkretract(readbuff(L2)), asserta(readbuff([])), niceread2(L),!

niceread2(L) :-
getO(C), niceread3(C,L)

niceread3(1O,L) :-
!readbuff(L2), reverse(L2,L)

niceread3(C,L) :
readbuff(L3), retract(readbuffCL3)), asserta(readbuff(tCIL3])),
niceread2(L)

" check_time_stamp-
read-factjfile(TS,S) ,timestamp(TS1),asserta(ts.siolation),
,compare(=,TS,TS1) ,retract(tsviolation).

" updatefactfile(NTS,NS) :-)set...channel(outfile(outf) ,name="facts. pro")
set_channel(outfile(outf),bufferlOOO0),
set...output(outfile(outf)),
write(NTS) ,nl,write(NS),
close-output(outfile(outf)).

" read-fact..file(TS,S) :-
set_channel(infile(dummy) ,name"/work/salgado/meunrep. pro"),
set,..channel(infileC inf) ,nae="facts. pro"),
set...input(infileC inf)),
skip-.unreadinput,

64

read(TS) ,read(S),
close.input(infile(inf)).

checkretract(S) :-
call(S), retract(S),

checkretract(S)

reverse(L,R)-
reverse2(L,[] ,R)

reverse2([] ,L,L)-
I1.

reverse2(LXIL] ,R,S)-
reverse2(L,[XIRI ,S)

index(X, fX IL] ,1) 1 .
index(X,[YjL],N) index(X,L,Nml), N is Nml+l.

endmod /* metutorill*

65

LIST OF REFERENCES

1. Department of Defense, Office of the Assistant Secretary of Defense for Force
Management and Personnel, Military Manpower Training Report: FY 1988, Gov-
ernment Printing Office, Washington, DC, 1987.

2. Cook, P., Kane, T.P., and McQuie, R., Advanced Technology Manpower
Forecasting, BKD TR-3-235, B-K Dynamics, Rockville, Maryland, 1977.

3. Barr, A. and Feigenbaum, E. A., The Handbook of Artificial Intelligence, v. 2,
William Kaufmann, 1982.

4. Kearsley, G. P., Artificial Intelligence & Instruction, Addison-Wesley, 1987.

5. Steinberg, E. R., Teaching Computers to Teach, Lawrence Erlbaum Associates,
1984.

6. Fletcher, J. D., Intelligent Training Systems in the Military, in Andriole, S. J. and
Hopple, G. W., Defense Applications of Artificial Intelligence, Lexington Books,
1988.

7. Sleeman, D. and Brown, J. S., Intelligent Tutoring Systems, Academic Press, 1982.

8. Wenger, E., Artificial Intelligence and Tutoring Systems, Morgan Kaufmann Pub-
lishers, 1987.

9. Campbell, D. S., An Intelligent Computer-Assisted Instruction System for
Cardiopulmonary Resuscitation, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1988.

10. Kim. T. W., A Computer-Aided Instruction Program for Teaching the TOPS20-MM
Facility on the DDV, Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

11. Rowe, N. C., Artificial Intelligence Through Prolog, Prentice-Hall, 1988.

12. Department of the Na"vy, Office of the Chief of Naval Operations, Replenishment
at Sea, NWUP 14 'Rev. D1, January 1989.

13. Prolog-86 (tin), Version 1.12, Copyright 1983, Micro-Al, Moraga, California, 1984.

66

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 9394-5000

4. Professor Neil C. Rowe, Code 52Rp 2
Computer Science Department
Naval Postgraduate School
,Monterey, CA 93943-5000

5. Jefatura de Operaciones Navales
Emabassv of Ecuador
Office of the Naval Attache
2535 - 15th St. NW
Washington, DC 20009

6. Direcci6n General de Educaci6n de la Armada 2
Emabassv of Ecuador
Office of the Naval Attache
2535 - 15th St. NW
Washington, DC 20009

7. Academia de Guerra Naval
Emabassy of Ecuador
Office of the Naval Attache
2535 - 15th St. NW
Washington, DC 20009

8. Direcci6n de Informdtica de la Armada
Emabassy of Ecuador
Office of the Naval Attache
2535 - 15th St. NW
Washington, DC 20009

9. TNFG-UN Patricio J. Salgado Z. 2
Av. Edmundo Carvajal #718
Quito. Ecuador
(South America)

67

